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AN ANALYTICAL STUDY OF THE PROPAGATION OF PRESSURE
WAVES IN LIQUID HYDROGEN-VAPOR MIXTURES

by

J. M. Clinch and H. B. Karplus

ABSTRACT _-_ _ _.o

The complex sound propagation constant is calculated for liquid-

vapor mixtures. Sound velocity and attenuation, related to the real and

imaginary components of this constant, are physically measurable quanti-

|
, ties, governed by the state and structure of the mixture. Low frequency

behavior is shown to be a function of the mixture quality or relative masses

of the phases. At intermediate frequencies the propagation depends on the
I

sound frequency and also on the size distribution of the discontinuous phase.

At high frequency the propagation is essentially a function of the dominant

, phase. Early hopes of utili_ingtow frequencies to determine the quality in

two-phase flow directly are circumscribed by effects such as noise, pipe

wall heat transfer, standing waves, etc., which set limits to the lowest

frequency which may be used. At intermediate frequencies the effects of

size distrihutio, and quality are difficultto separate. The high frequency

j velocity is likely to be useful in determining the flow velocity of one of the

phases so that other parameters of interest in two-phase flow may be

" deduced.
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I. IN TROD UC TION

The flow of two-phase fluids has in the past been the subject of

numerous investigations. Much of this work has been concerned with estab-

lishing the laws which govern the behavior of two-phase fluids under varying

flow conditions. Among the flow properties of two-phase fluids to be mea-

sured, a knowledge of the relative masses of the phases or quality is of prime

importance.

In principle the quality could be determined by measuring

some fluid property which depends on it. One such fluid property which de-

pends on the quality is the velocity of sound in the two-phase fluid. Under

certain simplifying assumptions the velocity of sound in a two-phase fluid is

related directly to the quality. These assumptions require that tt, ermodyna-

mic equilibrium exists between the phases during sound propagation. When

equilibrium prevails the velocity of sound as a function of quality may be cal-

culated from the known thermodynamic properties of the constituent phases.

The equilibrium condition is reached only _t v_,y icw oound frequencies.

It is shown in Section IV that there is a range of frequencies

over which the sound velocity depe, ds not only upon the quality but also upon

the manner in which the phases are distributed in the mixture and a13o the

frequency of the sound. Above this frequency range, the sound velocity be-

comes independent of the quality and assumes the value appropriate to that

of the predominant phase. Thus to be able to predict the q-lality from me.a-

surements of the sound velocity some knowledge of the phase distribution i8

required. It is the object of this investigation to study analytically,the feasi-

bility of using acoustical techniques to measure the quality of two-phase fluid

4
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flow. Wh21st the particular requirement of the investigation was to consider

the propagation of pressure waves, both continuous and shock waves, in a

mixture of boiling liquid hydrogen and its saturated vapor, the approach is

quite genera( and is applicable to any two-phase fluid.

The following analysis of pressure wave propagation in two-

phase hydrogen has been restricted to a homogenem_s mixture of vapor and

liquid; the liquid being dispersed uniformly throughout the vapor phase in the

form of very small droplets as for example in atmospheric fog. This work-

ing model of the two-phase fluid was chosen for two reasons; firstly, becaus

there is some evidence that the fog flow regime will predominate over a wide

range of flow conditions, and _ecendly, because the underlying physical pro-

cesses which occur between the phases during wave propagation can be more

readily understood.

Z
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If. PROPAGATION OF PRESSURE FLUCTUATIONS IN A FLUID

A. Definition

The concept of sound implies the propagation of a pressure

disturbance of small amplitude which undergoes no significant change in form

during propagation."

It is often convenient to represent pressure disturbances in the

form of a Fourier series containing a large number of individual components.

Thus a pressure disturbance in the fluid is given by:

p = p (x,t) (Z.I)

where p (x,t) is the pressure associated with the disturbance at any point x

and time t may be transformed to

p = ____ pj exp i_j (t - x/cj} (2. Z}
J

The propagation constant, c, may in generalbe complex.

This would imply wave attenuation

-! -1
c = c (I + i_') (z.3)r

In this case one component of the Fourier series or the propa-

d

gation of a single progressive simlsoidal wave would be

3
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P = Po exp (- ax) exp ic0 (t - x/c r) (2.4)

where a = 21r_t'/k = Ft/k and k = 2_Cr/C_ = Cr/f, and c r is the sound velocit

By solving the equations of fluid dynaznics for the conservatic

of mass and momentum for an element of fluid which undergoes changes in

pressure and density with time the pressure wave equation may be derived.

This wave equation yields a value for the constant c which is defined by:

-_2p c2 -_2p.- _ (2. S)

2 b,, z

where

c = d_ (2.6)

The rate of change of pressure with density may be related tc

the thermodynamic properties of the fluid and the complex parameter, c,

may be found from the measurable properties cr and ([as given by equatior

(2.4). Conversely, it is possible in principle to measure the sound velocity

and attenuation and derive such properties as density and quality (ifa ._wo-

phase fluid)upon which the measured values depend.

The complexity of the problem i'srelated to the manner in

which the rate of change of pressure with density depends ou the speed with

which the pressure changes take p1_ce. In other words, the sound velocity_

cr, and the attenuation per wavslength, Ft,are frequency dependent. In a

4
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two-phase fluid mixture this time or frequency dependence is a function of

how the phases are distributed both in size and space. To provide a better

understanding of the physical principles involved in pressure wave propaga-

tion consider the following problem: A fluid contained in e cylinder fitted at

one end with a piston is compressed when the piston moves inward. The den-

sity increase_ and heat is generated. For a lon_ cylinder a sudden motion of

the piston would compress only the fluid in contact with it. The resulting

pressure increase then compresses the adiacent element of Nl_i4 an__ ___re_-

sure disturbance is propagated. The speed of the propagation as defined by

equation Z. 6 is the ratio of the applied force to the fluid inertia.

Next the heat generated by compression affects the stiffness

of the medium, that is the pressure required for a given change in density.

In gases the heat generated is quite large since gases have a large coefficient

of thermal expansion. In liquids and _3olids the effect is usually small. In a

liquid-vapor mixture, however, the heat generated in the vapor is also trans-

ferred to the liquid. When the liquid and vapor are composed of the same

chemical substance, the problem is complicated by th_ change of phase which

can take place. In this case, liquid can evaporate ant_ the vapor can condense

producing ta: :e changes in density with very small changes in pressure. If

the pressure fluctuations are slow enough then the mixture will at each in-

stant be in equilibrium and the constant c in equation Z. 2 becomes a real

number with zero wave attenuation. However, when the pressure fluctuations

occur more rapidly che heat of compression liberated in the vapor cannot be

conduct d to the liquid before the rarefaction part of the acoustic cycle ap-

pears. In the limit at very high frequencies the pressure fluctuations may be

5
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too fast to permit both heat transfer and phase change to take place. Because

of this it is necessary to distinguish between the different vapor and liquid

flow regimes as well as different frequency regions.

B. Small Amplitude Pressure Waves- Low_Frequency Approximation

The propagation of slowly varying (low frequency) pressure

waves in an infinite medium consisting of a mixture of liquid and gas uniform-

ly dispersed within each other is considered. The assumption is implicitly

m_de that all changes of phase and temperature occurring at the interface be

tween the two phases takes place rapidly compared with the rate at which the

pressure is changing. It is further assumed that, as is the case for a single

phased fluid, the increased wavelength or reduced frequency accounts for the

isolation of the compressed and rarefied regions of the wave. Because of

this it is permissible to neglect heat exchange between regions of compres-

sion and rarefaction. In other words, the process is adiabatic. Further-

more, as there is no loss of acoustic energy it is also reversible and adiaba-

tic. The rate of change of pressure with......d_n_y,_.. *_-_,._._,u_,.... take_ place

isentropically and (_P/-_P)s at constant entropy will be required to calculate

the sound velocity c defined by equation 2.6.

Calculations have previously been carried out by many authors

(Refs. 1 and Z) for the equilibrium sound velocity in two-phase mixtures.

Karplus (Ref. 1), for example, shows that the equilibrium sound velocity c

is in general given by:

6
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],

The quantities Vfg, Sfg, Vf, and Sf are defined in the list of symbols. The

actual values of these quantities as a function of pressure for both the satura-

ted tiquid and vapor were obtained from published thermodynamic data (Ref.

3) for Z0.4°K equilibrium hydrogen. The slopes dV/dp and dS/dp were

obtained by interpolation of thermodynamic data on the saturation line. The

results of the calculations for the equilibrium low frequency sound velocity

c, as a function of pressure and quality are shown graphically in Figs. lI-t

and II-2. It is seen that the sound velocity c, is a marked function of quality

q but is relatively independent of the ambient pressure.

At low values of the quality, the sound velocity increases

monotonically with pressure. Above quality of 0.3, however, there appears

to be a maximum which lies in the vicinity of 60 psi for qualities approach-

ing unity. Also of interest is the product pc, plotted in Fig. II-2. This

quantity is equal to 1:he mass flow per unit area of a fluid flowing through a

pipe with a sonic velocity. Since this study was initiated values of pc as a

function of pressure and quality have been reported by Smith (Ref. 4) and also

by Harry (Ref. 5). It is found that there is agreement between these and the

present results within about Z %. Differences are attributed to the method

of estimating the slopes of the entropy .-pressure and specific volume-pres-

sure curves.

7

1964013234-018



lI00 I I I I I I I I I

1000 --

900 - f

/
800 /

700 /

° /
-_ 600

0

Ip.

500
"U •

o /U)

400 _ //
/

/ presjur_

I. 91 psia
300

.... 14.7 psi_

' 47.9 psia
7-00

....... " I00.0 psia

100 .... 143.3 psia

|
o I I I I I I I J

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Quality, q = Mass of Vapor/Mass of Mixture

Fig. If-I LOW FREQUENCY SOUND VELOCITY IN 7-0.4"K EQUILIBRIUM
HYDROGEN PLOTTED AGAINST THE QUALITY FOR SEVERAL
PRESSURES

8

1964013234-019



1300 I I I I .... I' I '! I I I I I I' I I

I I00 -

I000 --

900 -

300

ZOO

I00

J

0
0 IO 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

Pressure (psia)

Fig. ll-Z PLOT OF THE PRODUCT pc AGAINST PRESSURE FOR
VARIOUS QUALITIES IN THE HYDROGEN MIXTURE

1964013234-020



C. Large Amplitude Pressure Waves--Shock Wave Approximation

The small amplitude approximation used up to this _oint implies

very s-o._l changes in the state of the medium (pressure, density, tempera-

ture, etc.), and no change in its properties as, for example, the sound velo-

city. Changes in properties must be taken into account for large amplitude

pressure disturbances.

In this section the propagation of a single large amplitude pres-

sure step in a two-phase mixture is considered. The analysis utilizes the

conventionalRankine-Hugoniot l_lations (Ref. 6) for shock waves even though

i*. is well known that true shocks will degenerate into slowly rising steps in a

two-phase fluid. The derivation of the Rankine-Hugoniot equations does not

make any assumption concerning the rate of rise of the pressure but merely

assumes continuity of mass and the proportionality of the acceleration to the

applied pressure difference.

The change in the rate of rise of the pressure makes the defini-

t:un of the propagation velocity of the wave front uncertain in that its separate

components propagate at different velocities. The propagation velocity of the

step will be an average velocity across a wave front whose profile is contin-

ual_.y changing. However, the particle velocity and the state (density, tem-

perature, enthalpy, etc.) of the two-phase mixture behind the step can be

accurately predicted.

The Rankine-Hugoniot equations relate the entha!py H, internal

energy E, pressure p, velocity u, and specific volunm V, in the two regions

in front of and behind the step. It is convenieut to choose a coordinate system

fixed with respect to the step so that the velocity u 1 represents the relative

velocity of the step with "cespect to the ambient medium and u 2 the relative

10
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particle velocity of the medium behind the step. The particle velocity behind

the step with respect to a coordinate fixed in the ambient medium is designat-

ed as u 3 = a Z - u 1.

The Rankine-Hugoniot relations may be stated analytically as

H 2 H 1 = (pp - pll(V 1 + v2)/2 12.8a)

EZ tel = (Pz + Pl)(V1 - VZ)/Z (Z.8b)

2. 2
u] ,- v 1 tp z - pl)/lv 1 v z) (z. gl

2
u3 = (P2 - Pl)IV1 - V2) (2. 10)

Suppose we consider a two-phase mixture of pressure, Pl' and

density, 1/V 1, in which a pressure step, P2 - Pl' is propagated. The specific

volume behind the "shock" can be found since V 2 ano H E are not independent

vamables but are _iven by

V2 = q2V2fg + Vgf and H 2 = q2Hgfg + Hzf

Now Vzfg, Vzf, H2fg, HZf are all fixed at the given pressure P2 so that re-

arrangement of equation 2.8a gives

V 1 ( - pl)/P_.J+ + I'-II
V2 = P2, Hzfg vzf/Vzfg - HZf (2. 1ta)

(Pp. Pl)/ZJ + Hzfg/Vzfg

11
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V2 - Vl (Pz + Pl )/ZJ + E2fgVZf[V2fg + E---1 - E2f (2. l lb,)

(P2 + Pl )/2J + EEfg/Vzfg

and

(V1 + Vzf)(Pz - Pl )/2J + H1 - Hzf
qz = (Z. 1Za)

- Vzfg (Pz - pl )/ZJ + Hzfg

(.V1 - V2f)(P2 + Pl )/Z3 + E1 - IE2f
q2 = (Z. lZb)

+ V2fg (P2 + Pl)/2J + E2fg

Substituting in equation 2.9 gives

Z

Z V 1 - v.zfg (P2 - pl)IZJ)(p2 Pl )
u 1 = (Hzfg (Z. 13)

V1 (Hzfg - Vzfg (P2 - Pl )/J) - Vzfg (H1 - Hzf) - VzfHzfg

It is seen from Figs. II-4 and II-5 that the velocity of propaga-

tion for sh_.cks is identically equal to the velocity of sound (see Section II-B)

when the height of the pressure step, P2 - PI' approaches zero. The equivai-

ence of equations 2. i3 and 2.7 can also be demonstrated analytically.

The above derivation:, of course, becomes invalid if the pres-

sure step is sufficiently large to completely evaporate or condense one of the

phases; which phase is reduced by the pressure step depends on the initial

conditions. If the vapor concentration is initially high then a pressure in-

crease causes the adiabatic temperature rise to evaporate come of the liquid.

For high liquid concentration the large thermal capacity of the liquid reduces

the temperature ri_e and vapor condenses. Figure II-6 shows the su_)erpositi

12
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of initial and final pressures and densities after the passage of a shock. They

are seen to lie fairly close to lines of equal entropy which are shown as solid

lines.

For shocks which condense all the vapor the compressibility of

the liquid is neglected, and it is assumed that V 2 = Vlf. Substitution in equa-

tion 2.9 leads to

2 Vl2/qVlfgUl = (PE - Pl ) (2. 14)

Equations 2. ! 3 and Z. 14 where applicable are plotted for dif-

ferent initial pressures, PI' in Figs. II-3 through II-5. The "shock" velo-

city is seen to increase with increasing positive pressure step and decreases

if progressively larger negative steps are applied. The decreasing velocity

with an applied negative step implies that the shape of the step cannot possibly

be maintained as the small initial part cf the step travels faster than the

larger parts of the step. On the positive side conditions would appear to be

better than for a pure gas for shock formation, because the rate of increase

of velocity is muc|l higher than in pure gases. Also seen on Figs. II-3 through

II-5 are sharp kinks for the low quality initial condition, This is the point at

which all the liquid has condensed and no appreciable further change of den-

sity takes place, transition from equation 2.13 to equation 2.14. In this

region the rate of velocity increase becomes really large, and without further

information one might expect particularly rapid shock formation. Experi-

ments (Ref. 1) using boiling water disprove this idea. The exchange of heat

between the phases delays the pulse rise and an incident shock is slowed to a

gradually increasing pressure front also in this region.

17
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D. Pressure Wave Propasation-THi_h Frequency_Approximation .

Experimental data have been reported which indicate that the

measured sound velocity in two-phase mixtures can be quite different from

those calculated assuming equilibrium between the phases. Clinch (Ref. Z),

for example, measured the sound velocity in high quality wet steam at ultra-

sonic frequencies. His results showed that the sound velocity is independent

of the quality and remained at the value appropriate to the dry steam at the

temperature and pressure at which the measurements were made. This re-

sult has recently been verified by Collingham (Ref. 7} who measured the pro-

pagation velocity of negative shock waves in steam-water mixtures.

To explain the disparity between the experimental data at high

frequencies and the calculated low frequency equilibrium sound velocity,

Clinch proposed a frequency dependence for the sound velocity. This fre-

quency dependence is attributed to departures from equilibrium due to drag

and heat and mass transfer between the phases. An analysis to include these

effects as the reasons for the velocity dependence upon frequency, i.e. dis_

persion, is given in Section IV. In other words at high frequencies, the effec

of phase drag and heat and mass transfer is to prevent equilibrium from be-

ing established in the period of the acoustic cycle. Thus the high frequency

propagation velocity is essentially given by the thermodynamic properties of

the dominant ' xse; the other phase making no contribution whatsoever to the

velocity. For i ance, in a mixture of liquid droplets stlspended in a large

volume of vapor, the high frequency sound velocity is that of the vapor phase

alone, This concept is discussed further in Section IV.

18
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Calculations were made of the sound velocity in pure hydrogen

vapor close to the saturation line over a large pressure range. The thermo-

dynamic pro_'erties of the vapor used to make these calculations were taken

fron, Reference 3 for Z0.4°K equilibrium hydrogen. To compute the high

frequency sound velocitY coo, the following relationship was used:

Z _ P p _H p H ) (H/E
= - - - - + (z.15)

where H and E are the enthalpy and internal energy per unit mass of the

hydrogen vapor. This relationship (2. 15) for c_ is der;.ved in Appendix G.
t" "t

The function EZ/H L_(H/E)/_EJS i s found to vary slowly and remaiusless

than + 0.15 over the range of interest.

]_y plotting this function and using graphical interpolation, fairly

accurate values of the sound velocity in the pure vapor were obtained. The

sound velocity %0, is shown plotted against the vapor pressure in Fig. II-7.

The sound velocity is seen to increase rapidly with pressure in the low pres-

sure range. Above 50 psia, there is little further change in velocity with

pressuze until the critical region is approached.

19
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III. RELAXATION

A. Introduction

In a polyatomic gas the wave propagation constants are derived

classically in terms of the internal and translational energies of the mole-

cules, and the relaxation time required for equilibriurn to be established be-

tween the internal and external energies.

For a two-phase mixture of liquid and vapor estimates of relax°

a_ion times for heat transfer between the vapor and liquid, together with the

low and high frequency sound velocities, calculated in Section II-B and D

respectively, yield approximate estimates of the sound velocity as a function

of frequency. The dependence of sound velocity upon the fre_luency is shown

further by taking into account drag and heat conduction between the phase.s.

This is discussed in Section IV-A and B.

The initialapproximation neglecting mass transfer are i11ustrat-

ed graphically. More complex functions are derived for mass transfer (Ap-

pendices A and B). These involve the temperature gradient in the vicinity of

the interfaces and would" require a computer program, This is beyond the

scope of the present program.

B. Relaxation in Gases--Classical Approach

There is quite an extensive literature on wave propagation in

fluids in which equilibrium conditions are not reached instantaneously. A

21
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good summary is found in Herzfeld and Litovitz (Ref. 8). More general treat-

ments are due to Meixner (Ref. 9) and others (Ref. 10).

The basic assunlption in all these treatments involves the return

to an equilibrium condition at a rate linearly proportional to the displacement

from it. This assumption leads to a logarithmic approach to equilibrium m

terms of a specific time constant. The classical treatment of relaxation can-

not be applied very easily to two-phase fluids. Thus, in order to throw some

light on the principles involved, the general case of relaxation in a polyatomic

gas is given as an example.

In the treatment of relaxation in polyatomic gases account is

taken of the following:

1. The rotational and vibrational r_odes of the atoms in the

molecule

Z. If the number n of molecules in the excited state differs

from the equilibrium number n then the rate of changeO'

of n is linearly proportional to (n - no)

dn/dt = (n ,-no)/_

(n - n o) = noe" t/T {3. I)

_s known as the tiuqc constant or relaxation time. This

may b:_ written in terms of an internal, energy E i and equili-

brium internal energy Eio

E. E, = E. e -t/_
1 lO 10

2Z
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3. The equation of state relating pressure, density and tern-

perature is a function of the temperature associated with

the translation energy only and does not depend on the in-

ternal energy of the molecules. The specific heats of the

gas are then defined in terms of the translational enthalpy,

Htr, and internal energy, E i.

H = Htr + E i

( b H/ "_T) = C
po

(_OHtr/_ T) = Cp_

(bE./bT) = c.
1 1

then,

C = C + C.
po poe

also

CVo = CV_ + CVi

Combining these equations yields the complex propagation vclo-

city c at angular frequency, _, in terms of the zero frequency velocity and

the specific heats of the gas:

(Co/C) 2 = (1 + it_Cvtr/Cvo)(1 + ieTCptr/Cpo )-1
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1964013234-034



This gives the real component of velocity c and absorptionr

per wavelength _t provided the latter is not too large.

2 2 2 co2) _,)2 [ 2]c r = c o + (c - (_, / 1 + (_1%") (3.2)

and

= 2_m_""/[l + (_o'C'") ?'l..j (3.3}

where

_m = _r(%.,/co - Coi%o) (3.4)

_m is the maximum absorption per unit wavelength, c o is the sound velocity

at very low frequencies, and coo is the sound velocity at very high frequenc:

"C" = (1 - Ci/Cvo) = inflexion point on velocity curve

T'" = (coo/c o) "C'" = maxi.mum point or. absorption curve

It is seen from equation (3.2) that to obtain the sound velocity

and attenuation at any given frequency, _, a knowledge of the low and high

frequency sound velocities as _e'l as the relaxation time are required. Thi

theory is, of course, valid only if one relaxation iime is present. The geno

eral forms of these functions are plotted in Fige. III-I and III-2.
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The existence of multiple relaxation times greatly complicates

the picture; examples (for two relaxation tiraes) of the velocity-frequency

function are shown in Fig. III°2. The relative magnitude of the absorption

due to the two processes is used as a parameter. These plots in Figs. III-I

and 2 are intended to illustrate the fact that with more than one relaxation

time, it is very difficult to predict the limiting value of the low frequency

sound velocity c from a limited number of measurements at intermediateO

frequencies.

It has been shown in Section II-B that the low frequency velo-

city depends only on the quality; at intermediate frequency it depends on both

the quality and the time constants.

C. Relaxation Processes in Two-Phase Mixtures

To illustrate the order of magnitude of the time constants in-

volved, the mean temperature time functions of simple geometries subjected

to step function temperature changes at the geometrical bo_udaric_ a_e an-

alyzed. The geometries chosen are a sphere and a spherical shell. This

may reT resent liquid droplets in vapor or spherical bubbles in liquid. In a

model consisting of many uniformly spaced identical spherical droplets sur-

rounded by the vapor, heat transfer occurs at each boundary.

In the vapor there exists a neutral plane across which there is

no heat transfer. Attention may be focussed, therefore, on an individual

droplet surrounded by a vapor shell whose boundary undergoes a sudden tem-

perature change. The radii Rf and Rg of the droplet and vapor spheres are
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chosen such that the volu_nes of the two regions are in the same ratio as in

an arbitrary two-phase mixture of quality, q

(Rf/Rg) 3 = 1 + pf/pg (1 - l/q) = M 3 (3.5)

The mean temperature T m of a droplet when subjected to a

sudden surface temperature change from T o to T s is given by Appendix B,

Equation B- 5.

_O

(T m - Ts)/(T s - T O) = (6/._, Z) _ I/j 2 exp (-jZt/-t_f) (3.6)

j : I

Zf = RfZ/af _2'

This function is plotted in Fig. III-3. This is, of course, not

simple relaxation, but may be considered to consist of an infinite number o

relaxatiotx tim_es Tf/j 2, j being any integer. Figure III-3 shows that highe

order relaxation times contribute very- little after a time t--_'_'f.

This permits consideration of a single relaxation t_me _ _ for
L

low frequencies, f<: l/_f. For higher frequencies f _l/Tf the effects of

several relaxaticn times have to be considered. At very high frequencies

f>_>l/Tf, there is very little heat transfer.

:,APpendix B-2 shows that if the spherical shell surrounding _L

sphere of infinite thermal capacity suddenly changes its temperature from "

to T , then the mean temperature, T of the shell is
8 m

Z8
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T m - T 61vl2 {I - M) 2 _ exp (- t/Tg)
s = (3.7)

Z 2
T - T I - M 3 j -- I to (sin to.- R/I}
o s j j

where M = Rf/Rg and Tg = Rf Z (M -2 - l)/ag_jZ and tojis a root of the

equation

to./tan to. = l - M
J J

This function resembles that derived above for the sphere., but

it has not been plotted separately. The effect of the higher order constants

is somewhat smaller than in the case of the sphere.

The time constants are seen to depend upon the radius Rf of the

droplet. Numerical values of the time constant T" in the vapor region were
g

calculated for a fog of liquid droplets suspended in vapor. These values for

the vapor shell may be compared with the relaxation times _f of the droplets

I. The ratio _'f/Rf Z is given for three temperatures and
shown in Table

Tg/Rf 2 is also given for these same temperatures and for different values df

quality in Table II.

It is seen that the time constant for the vapor is gener,ally longer

than in the liquid. The thermal diffusivity is greater for the liquid and in

most cases the distance between droplets is considerably larger than the drop-

let radius. An exception is noted for low quality-high temperature conditions.

= 54°R, q = 0.1, and R /Rf is only 1.16. Evidently theIn that case T s g

density of the two phases are approximately the same in this case, so that a

quality of 0.1 does not conform to the basic assumption of well separated

small droplets.

3O
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TABLE I

TIME CONSTANTS OF DROPLETS AND SURROUNDING VAPOR

IN TERMS OF THE DROPLET RADIUS Rf

(M-croseconds per square micron)

or

(Seconds per square millimeter)

T = Z5 ° 36" 54 °
S

"('f/Rf 0.5 0.51 1.06

"Ug/Rf 2 q = 0.1 1.94 0.65 0.01

_g/Rf 2 q = 0.5 22.9 11.5 0.61

'Tg/R Zf q = 0.9 231.0 137.3 11.4
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TABLE II

TIME CONSTANTS FOR VARYING DROPLET DIAMETERS

IN A HYDROGEN MIXTURE AT A SATURATION

TEMPERATURE OF 36°R

Diameter 2Rf

Quality q 2. _ 20 _ 2.00 _ Z mm

't f Independent 0.51 _s 0. 051 ms 5.1 ms 0.51 s

O. 1 O. 65 i_s O. 065 ms 6.5 ms O. 65 s
"_"g

,_,g 0.5 11.5 i_s 1.15 ms 115.0 ms 11.5 s

0.9 137.3 bts 13.7 ms 1370.0 ms 137.3 sq'g
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It is seen that small droplets rapidly equalize in temperature.

If the droplets do not exceed a few microns in diameter it seems quite possi-

ble to select a measuring frequency of a few hundred cycles per second with

full assurance of being below the velocity dispersion region up to qualities of

about 0.9. As very high qualities are approached _he separation of the drop-

lets become so large that other mechanisms of heat exchange including that

of convection and radiation must be included.

Droplets of several tens of microns in diameter have vapor re-

laxation times _g of a few milliseconds up to qualities of 0.5. At 0.9

quality the vapor relaxation time is already in the tens of milliseconds.

Thus any measurement in the low frequency region where velocity disper-

sion is not evidenced would require frequencies with periods of hundreds of

milliseconds, that is, frequencies well below 10 cycles�see. From Appendix

F it is seen that in this frequency region the effect of tube walls on sound

propagation must be taken into account; unless, of course, the tube has a

very large diameter. In other words the wall diameter must be large com-

pared to the distance between droplets.

Other difficulties al_o present themselves for low frequency

measurements in tubes of finite length. Reflections from the ends of a tube

would be pronounced and measurements of a progressive wave in the pre-

sence of multiple tube reflections would be impossible. Of course, the velo-

city could be determined by measuring the length of the standing wave pro-

duced by the wave and its reflection. However, the resolution becomes in-

adequate; a h_if wavelength at 10 cycles/see for a velocity of 500 ft/sec is

Z5 ft. Furthermore, standing waves of low frequencies would be difficult to

interpret in regions less than a half wavelength.
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It must be pointed out that the models used to obtain the vapor

relaxation time., IAppendix B-Z) are somewhat limited and only indicate or-

ders of magnitude. However the marked dependence on droplet radius shows

that the uncertainty in knowing the precise droplet diameter would outweigh

that of the relaxation time of the particu/ar droplet size.

D. Conclusions

The difficulty of measuring the quality in fog flow by an acoustic

technique may thus be reiated to the slowness with which the temperature

fluctuation penetrates the droplets. Low frequency sounds capable of probing

the individual droplets cannot be used for detailed analysis at distances small

compared with a wavelength. In very long pipes plane progressive waves can

be propagated and phase differences may be measured within limits set only

by the noise accompanying the flow.

To determine the qua_.ity from an intermediate frequency men

surement it might be possible to predict the veloctty.-frequency function ac-

curately from the theory given in Appendix A and then extend this to a typica_

droplet size distribution, However, if the droplet size distribution is already

known with sufficient accuracy there is no longer any need for a sound velo-

city measurement to determine quality.

Alternatively the sound velocity and attenuation measured over

a widc frequency spectrum might be combined to yield data both on the quality

and droplet size distribution. However, the r.ature of attenuation measure-

ments does not permit measurements to be made over very smaU distances
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and from what has already been stated tow frequency standing waves mea-

surements do not give adequate resolution.

Other acoustic techniques may find application, however, it.

two-phase fluid flow research. It is well known that heat flux data and total

mass /low rate do not give all the information required to determine the flow

rates of the individual phases,because the slip rate, that is the difference be-

tween liquid and gas velocity is not known.

It may, however, be possible to use acoustic techniques to mea-

sure the flow velocity of the continuous phase of a two-phase mixture because,

at high frequenc:.es, the velocity of sound i_ independent of the presence of

the discontinuous phase. U_trasonic flow meters havebeen constructed based

on a measurement of the difference of the velocity of sound upstream and

downstream in the fluid. This difference may be measured in terms of the

phase of continuous waves or arrival time of pulses. Because high frequen-

cies are used, good resolution is possible; moreover, reflections from the

ends of the pipes can be overcome. In conclusion, it appears that aco,_stlc

techniques involving the direct measurement of quality have many serious

drawbacks in spite of their apparent attractiveness. However, the measure-

ment of the flow vetocit_r of the continuou_ phase appears to be feasible and

likely to be of considerable importance in two-phase flow research.
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IV. A. VISCOSITY _3FFECTS AT THE INTER FACE BETWEEN THE PHASE5

1. IntroductL_,

Much of the past work on sound propagation in two-phase fluids

has been concerned with the attenuation of sound by particles suspended in

gases apd liquids. Attenuation is caused by several effects which occur at

the phase boundaries. Basically these effects are due to viscous drag, heat

conduction between the phases, and a.n ;_dditional loss mechanism due to mass

transfer by condensation or evaporation of liquid. Rayteigh particle scatter-

ing can also occur, but this source of attenuation :an be neglected when the

sound wavelength is large compared to the parhcle dimensions. Several

authors have calculated the sound attenuatio[_ by srnal!. -spherical particles

suspended in a viscous fi-id. SewelJ (Ref. 17.). for example, considered the

case where the particles did not mov,: w_h the solmd w-re but were station-

ary in the fluid. Epstein (Ref. 13) m a mot_ r_gorous analysis ex_,'_ained the

attem,at-.'on of oscill.atlng paralc'es "_na _}scous fi_:td. Epstein'_ theory is

quite complicated, and consisted of s_.l_ln_ _Jl_ e×p;essions for the particle

velocity in the oscillating fluid in terr:_s of ,,'(,(tnr and scalar potentials.

Eostein considered both r_gid and e.l,_s_ic p;;l-I_c'Yes an_ was able to derive

Sewellls formu.ta for the partqcle a_tenuahon _ a sp_,cial case of the general

theory.

Unfortunately, I_pslein's theory fails to take into account the

change of sound velocity of th- m_.xture with frequency, i.e. disper6ion, and

the theory is valid only when the den_ily of the g,_s to the density of the sus-

pended particles is very small. In a later pap-r Epstein and Carhart (Ref.
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14) treated the problem of soutid attenuation by particles due to both viscosity

and heat conduction. The effect of heat conduction will be considered in Sec-

tion B of this chapter.

Zink and Detsasso (Ref. tS) used Epstein and Carhart*s theory

to calculate both the attenuation and sound velocity in several particle filled

gases. The theory was compared with experimental data taken in the audio-

frequency range. Zink and Delsasso assumed ideal gas conditions and used

a step-by-step method to calculate the sound velocity in the ntixture for each

frequency and particle size. It was found that the agreement between theory

and experiment was quite good over the limits of experimental erro The

theory outlined below for the v_locity dispersion and a'_sorption due to vis-

cous drag between phases is a different approach to that used by Epstein. A

comparison between t_ese two approaches (Appendix D) shows that the pre-

sent theory is quite general in its application, and that Epstein*s solution is

valid only under certain circumstances.

2. Effect of Viscous Drag on Sound Propagation

The nature of the viscous drag process has been investigated by

Lamb (Ref. 16) who considered the effect of viscosity on the period of a spher-

ical pendulum oscillating in a viscous fluid. Lamb found that the force X

exerted by the fluid on a sphere of radius, Rf, oscillating with angular fre-

quency to is

X = mR _I �9d (UR - Uf) + .-? mg_ + (U,,6 " Uf) (4.1)

Z 4 _2Rf- /
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where (Ug - Uf) is the instantaneous relative velocity between the fluid and

sphere, 02Rf 2 is the frequency parameter _RfZ/Z_g, and mg is the mass of

fluid displaced by the sphere. The first term on the right of equation (4.1)

gives the correction to the inertia of the sphere while the second term gives

the frictional or drag force proportional to the relative velocity. The equa-

tion of motion of a spherical droplet can be written as

4 3 dUf 4 3 dU

-- X + pg . -- vRf _ (4. Z)Pf 3 _rRf dt 3 dt

where pg . 4/3 'nRf 3 dUg/dt is the external force produced by the sound

wave. Assuming sinusoidal ruction of the fluid of the form Ug = Ug o exp ic_t

and that the droplet lags in general the fluid oscillation by phase angle _ ,

where Uf = Ufo exp i (cot - f: ). The solution of equations 4. 1 and 4. Z for the

relative amplitude ratio (Ug ° - Ufo/Ugo) and phase angle _ between the

motions is given by:

U o- Ufo = (l - pg/pf) (4. 3)

z TUg ° + (1 +

_ = tan-l('(D 0_+ 1 (4.4)

where

• = + -- (4.5)

Pf
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and

- - + Pg (4.6)
0 4 S3Rf . pf

These functions have been calculated in a mixture of saturated hydrogen va-

por containing liquid hydrogen droplets at several pressures. These plots

are shown in Fig. IV-1 for relative amplitude and phase. It may be seen

that when the parameter _2Rf2_ 10 -3, the droplets and vapor move with

equal amplitude and phase during sound propagation. Alternatively, when

_2Rf2_>102, the relative velocity amplitude reaches a maximum, that is

Ufo-_0, and as a result the droplets remain stationary in the sound field.

The effect of the drag force given by equation 4. l on the sound velocity in the

two-phase mixture can be seen by writing down the wave equation for the

mixture•

..
o

)2Ug = coc_ ' _ 14.71z s_ 1
z z 3x q (4/3) _Rf pf _ t

.:

Equation 4.7 is derived in Appendix C by considering.the fluid forces acting

on an elementary volume of vapor due to pressure, inertia, and phase drag.
oo

The second term on the tightside of the above equation clearly takes into _c-

t:dunt the relative motion between the phases. For instance, as _ X/_ t-,_0,

such as would be the case at high frequencies when _2Rf2_ I02, the effective

sound velocity will be that of the vapor. This "i.sthe situationwhen the drop°

let xs large and/or when the fr.equency is high. Eliminating ._X/_ t from

Q
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the wave equation by the relation between Ug and Uf at any instant, and by

considering Ug to be of the form Ug = Ug o expi(_t +kx), where k =in v - e/c,

c being the phase velocity and a the amplitude attenuation coefficient it canv

be shown that:

/= 1 + ! - (4.8)

q (1 + (!)) 2 + 0 Z

and

cl 0 <_v -- av_ = T¢ I - _ (4.9)
92coo q I + (!))2 + pf

!

where _v is the attenuation/wavelength k_o due to viscous effects. If the

apparent increase in the inertia of the droplet is neglected, i.e. Q) = O, the

attenuation be come s: ,

-t

av = N , =Rf z)3 (Z}jg_)I/z I+ _ (4.10)

• L cooRfJ
L

This expression, is identical to Sewell's formula for the viscous attenuation

in a fluid containing N particles of radius Rf per unit" volume. It is .of in-

terest to not_.that Sewell's formula gives a finiteattenuation at the.',low fre-

quency limit _ = 0. The reason for this error is that Sewe11 a_umec_ the"

droptets to be fixed in space which is only'true at high freguencies.,'.A com-

parison of the present expression for the viscous, attenuation is made., .. with.

Epstein's formula in Appendix D. It is noted in Appendi-- D that Epstein's

,_ 41
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formula is an approximation of equation 4.8. This is because Epstein neg-

lected to take into account velocity dispersion and higher v_iues of the gas to

partic,_edensity ratio as well as omitting certain ccefflc_ents above "-hefourt_

power in his formula.

Changes in fhe sound veloclty and a.ttenuation :,s_ng _.he forego-

ing theory have been caicula_.ed for liqu:;d hydrogen-vapcr _.!,'ures at severa

pressures and dryness fractions cver the range of ir, teres% These results

are plotted in Figs. IV 2 through IV.4. ;t may be seen that the va?.ue cf the

frequency parameter _2Rf2 determines the magnitude of the sc:ur_d velocity

ratio {c/Coo )Z and attenuation per wavelength 6vfor .a. g'_ven pressure and
)

quality q. For examp!e, at a quality of 0.7 and a pressure cf 74, _ ._b/'in":

velocity dispersion occurs over the range Io-Z_" 2 _ 2Rf"<_ 10 This :,neans

that at values of _2Rf2_ 10 -2, :.he droplets and vapor are ,_n dynam',ca'_ equ_.

ibrium with li.ttle or no dissipa_on of sound enez gy ¢;cc-,_r,r,g due ,o drag _:',

the pha.se interfaces, in other words a.t,;ery _ fr. equenc_.es ar, dtc:¢ _tth

very small droplets, the tc_.'- mass of the L._.-_uzdis effec_i e d,Jr" og wave pro

Z. 2
pagation. Thus under these coadtt__ons c /c_0 = q. As the fre.quenc.x, _s

raised or xnore specifica|.Sy as _-Rf" _ncreases_ the droplets ccr--r:,b,ote Tess

of their total ._._.ass to the _apor dens_t,¢o A te_:.nin_.', va;.ue c,f ._ Rf ,j,

the:efore reached when the droplets re:na:;u sta.:Aonarv ,n the v_..pcr :hereby

Z _ 0 _
contributing nine of their mass to the pro,pagan:or° A,"va._es of _ Rf"_ "

the effective density of the mlxt_re wi_,l be that of the ,,apc;r. a:one.., and the

propogation wi.ll be governed on;.y by the thermodynamic propertaes of _he

vapor.
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IV. B. COMBINED EFFECTS OF HEAT CONDUCTION AND VISCOSITY

ON SOUND PROPAGATION

I. Introduction

The problem of heat conduction between the phases during souhd

propagation has been examined by Epstein and Carhart (Ref. 141 for gas-

particle mixtures. They derive an expression for the _pave e'tenu_,tien d,._e

to heat conduction between the gas and particles but.no account is taken of

the case of the evaporation and condensation of liquid _x,hen the par'tc._e is a

droplet. In order to simplify the problem of heat exchange tn the :iqu_.dhy-

drogen-vapor zTiixture it is assumed in this discussion thaf,n , phase change_

i.e. mass transfer occurs during sound propagation; the on}y he ot exchange

taking place is that of conduction. This assumption is justified on:.v unde_

certain circumstances, nam,,qy that there is a critical va.lue of the qua3:,'v:

qc zuch that a pressure increase does not promote phase change_ xoe.

dq/dp = 0. Vatuc_ of this critical quality qc have been ca!c_,_a'ed for seve-_:

pressures in Appendix E.

Z. Effect _f Heat Conduction on Sound Absorption

It has been shown by Epstein and Carhart that the sound attem_.;-

tion due to heat conduction is given by

- g - + nR InR f
QH

Pgpg \ vg
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where

1Zpg%_ 9p 2C 2-1 = 1 + " - + Pg (4.1Z}
InRf Z

n fpffo n4Rf4pfZcf°

2 Z _Rf Z /Zag, is the gas diffusivity. The function InR f deter-n Rf, = , , ag

mine_ to what extent temperature changes influence acoust._c wave propaga-

tion. When InRf--_ 1: the frequency is too rapid to permit heat conduction

into a liquid droplet. Alternatively, when InR--_ 0, as at very low frequen-

cies, complete hea_ exchange takes place between the phases in the acoustic

time period. As a result of this the droplets remain in temperature equili-

brium with the sound wave. Thus, over the range 0_InR _ 1, sound disper-

sion and attenuation occurs due to heat conduction effects between the separ-

ate phases. The above formula (4. 1 1) for the attenuation due to heat _.ondue-

tion may be written as

Cq )_H - aHk_ = ¢rpg/pf (_/_ I _. _i + nRf) 3'InRfl4. lla)
qc n2Rf 2

This yields the absorption per unit wavelength _H' due to heat conduct.on in

terms of the frequency parameter n2Rf 2 and criticaJ quality qc" A plot of

_H' against n2Rf 2 for a liquid hydrogen-vapor mixture at atmospheric pres-

sure is shown in Fig. IV-3. It is to be noted that the value of the critical

quality for the mixture under these conditions is 0. 375 (See Appendix E).

A cornparison of the absorption curves for the combined effects

of viscous drag and heat conduction is shown in Fig. IV-6. As the viscous
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drag depends upon the parameter OZRf2 and the heat conduction upon nZRf 2,
2

the absorptio:1 is plotted _Rf for both effects. It may be seen that both ab-

sorption curves follow a similar trend over the range of dispersion for the

mixture. In particular, the peak absorption is seen to occur at approximate-

ly the same frequency. For a droplet radius of I0 _, the _requency at which

maximum absorption occurs is of the order of 160 cycles/sec. It must be

pointed out, however, that the frequency at which peak absorption occurs is

in this approximation independent of the quality, q, and does not in itself pro-

vide a means of measuring quatity by sound absorption techniques. This may

be demonstrated by referring to Figs. IV-2 through IV-4 for the absorption

due to viscous drag irl which the absorption peaks for various qualities all lie

to the same value of _ZRfZ.
close

Figure IV-6 shows drag effects to predominate at high frequen-

cies. The peak absorption due to this effect occurs at a slightly higher fre-.

quency than that of heat conduction. Below the peak region of the curves ab-

sorption due to heat conduction slightly dominates that of viscous drag, on.

the other hand, above peak absorption the converse is true, and the viscous

drag absorption is greater (than that caused by heat transfer) by at Least 50 °/o

over a wide range of frequencies.

&. Effect of Heat Conduction on Sound Velocity

To calculate the sound velocity change with frequency due to

heat conduction between the phases in liquid hydrogen-vapor mixtures the fol-

lording simplified analysis is proposed. It is assumed that the mixture contains

50
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equally sized droplets distributed homogeneou-_ly throughout the vapor which

is consfdered an ideal gas. At the cryogenic temperatures under considera-

tion, hydrogen behaves like a monatoraic gas whose ratio of specific heats,

is I. 667. This is because both the rotational and vibrational degrees of

freedom of the d:atomic molecule remain inactive below about 60°K and only

the translational energy contributes to the specific heat of the gas. At low

frequencies, there will be a specific heat ratio for the mixtur-., _/o' when the

total heat capacity of the droplets and vapor wilt be effective during wave pro-

pagation. This re._ults from the time period of the wave being larger than

the time required to distribute the heat generated during an acoustic period

uniformly throughout the liquid and vapor. Since the specific heats of the gas

and liquid are extensive properties, then for a homogeneous mixture at very

low frequencies

= + (1 qc ) (4.13)Cpo qcCpg - Cpf o

and

Cvo - qcCvg + (I - qc )Cvf ° {4.14)

Furthermore, since Cpg/Cvg = _/_ for the gas,

Cpo qc_/o6 + (1 - qc ) Cpf°C

_o = -'-- = v_ (4.15)
Cvfo

Cvo qc + (I - qc )
Cvg
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where Yo is the low frequency specific heat ratio for the mixture, and %fo

is the low frequency specific heat at constant pressure for a droplet. The

values of Cpf ° and Cvg may be found listed under the physical properties of

hydrogen. It is assumed for the purposes of calculat';_;n that Cpf ° = Cvf o.

This is approximately true for any liquid. Thus, both the low and high fre-

quency specific heat ratios may be calculated for the two phase mixture since

the effective value of specific heat of the liquid at high frequencies is zero.

In the intermediate frequency range over which velocity dispersion occurs

due to a quasi-relaxation of the droplet specific heat, we may define an effec-

tive heat capacity for the droplet and an effective ratio of specific heats of

the mixture both dependent upon the frequency.

= + (1 - qc ) C {4 16)Cp elf qcCpg Ff eff

and

Cv eff = qcCvg _ {1 qc ) Cpf eff (4.17)

The variation of (Cpf)eff with frequency may be found by considering the

function InR f in equation 4. 12 for the attenuation due to heat conduction.

The meaning of InR f may be interpreted as follows: For N droplets of equal

size InRfN represents the effective number of droplets not abosrbing any

heat from the gaseous phase. The effective heat capacity of a droplet at a

given frequency is the difference between the total heat capacity of the droplet

{zero frequency), Cvf o, and the fraction of its heat capacity not absorbing any

heat for the gas, Cvf oInR f, i.e. :
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(Cvf) eff = Cvfo - CvfoInRf

also,

(Cpf) eff = Cpfo - CpfoInRf

Substituting this expression for (Cvf) eff and (Cpf)eff in equations 4.16 and

4.17 and dividing by Cvg

(1 - qc }

qc ¥ + Cpf o(I - InR f)

C__) Cvg 14.18i

= _/eff =
eff (1 - qc )

qc + Cpf ° (I - InR f}C
vg

This expression for Veff is plotted in Fig. IV-7 against the frequency para-

ngRf 2meter for a hydrogen mixture of critical quality 0. 375 at atmospheric

pressure. It is seen that Veff increases very slowly with nZRf 2 from about

1.19 for the low frequency specific heat ratio (Vo) to 1.67 at high frequen-

cies (V,o)" Thus uver the range 6 x 10-_ n2Rf2_102, velocity dispersion

is seen to occur due to the thermal lag in the heat capacity of the dr'oplet. •

For droplets radius of 10 _, this frequency range varies from about 30

cycles/sec to about 365 Kc/sec. It is of interest to compare this frequency

range for dispersion due to heat conduction with that for viscous drag under

the same physical conditions. For viscous drag it may be seen from Fig.
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dispersion ranges from 6 x 10-_ _2Rf2_102. 1his range
IV-2 that the

corresponds to frequencies from about 15 cyctes/sec to 260 Kc/sec for

droplets of 10 tt radius.

4. Combined Effects of Heat Conduction and Viscosity on Sound Velocity

_n order to calculate the sound velocity change with frequency

it is necessary to combine the effects of drag and heat conduction. _y assum-

ing the mixture to be an ideal gas, the sound velocity c is

2 Yeff p
c - (4.19)

Peff

The effective value of the spec£fic heat ratio from equation 4.18 is

• (1 - qc)
qc¥oO + C ( I - )

C pfo InRf
vg

Yeff =
(I --qc )

qc + Cpfo (1 - InRf)
Cvg

and for viscous drag dispersion (see Section A, equation 4.8) by:

= 1 + • --__ 1 - P_g

\ qc / (l + ®)2 + 0z Pf

in this case
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2 _/oe P 2 N_P
Coo -- and c -

Pg Pelf

since the above dispersion equation is derived on assumption of no heat ex-

change between phases, i, e. _/eff = Yao for all frequencies. Thus, the above

expression yields the effective density change with frequerxcy in the mixture:

Pelf = Pg 1 + 1 (4. ZO)
0 2

\ qc / (t + (I))2 + pf

Combining the above formulae for _eff and Pelf in equation 4. 19 the sound

velocity in the mixture c, may be calculated as _ function of the product

_oRf Z. These results are plotted in Figs. IV-8 anc IV-9. it is seen
that for

values of c0RfZ< 10 -7 , thermodynamic equilibrium exists between the phae .-s

dur_.ng sound propagation. This corresponds to frequencies less than about

15 cycles/sec for droplets of 10_ radius, and yields a value of 600 ft/sec

for the equilibrium sound velocity, c o . This value is an exce:ient agreement

_ith that calculated from the thermodynamic properties of the hydrogen mxx-

ture for a quality of 0.375 at atmospheric pressure {see Section !I-B). A*.

values of wRf2_10 -3 the high frequency sound velocity
of 1150 ft/sec is

approached. This checks very well with that calculated from the properties

of the hydrogen gas (see Section II-D).

This agreement lends support to the validity of this theory of

velocity dispersion due to both drag and heat conduction. It must be empha-

sized, however, that the heat conduction theory is only applicable at values
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of the critical quality qc when no evaporation or condensation of liquid oc-

curs at the phase interfaces. For all other qualities account must be taken

of mass transfer. This is considered in Appendices A and B.
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IV. C. PRESSURE PULSE PROPAGATION IN THE TWO-PHASE

HYDROGEN MIXTURE

In this sv_tion the problem of the propagation of a pressure

pulse in a mixture of hydrogen vapor containing liquid droplets in suspension

is considered in relation to the dispersion and absorption properties of the

mixture. It is assumed that the amplitude absorption coefficient as well as

the phase velocity are known functions of the frequency and quality. These

,.'unctional relationships have already been established in Section IV-A for

the velocity dispersion and absorption in the mixture due to drag effects.

These results will be used in the following analysis. The object here is to

provide an analytical description of the propagation of varying pressure pulses

through the mixture, and attempt to relate this description to the quality.

Such a description may be expected to reveal the changing pressure pulse

shape both in space and time and to suggest some quantitative means by which

the quality could be determined experimentally.

Several abortive attempts were made to analyze the propagation

of a single pressure pul._e of arbitrary form in the hydrogen mixture. The

following approach was, however, found to be quite successt'll: A series of

pulses of a given shape and having a periodicity q-p or repetition rate 1/q_p

is assumed. Sucha series of pulses may be represented by a Fourier series

of which a finite number of the initial terms in the series represent an ade-

quate physical description of the pulse. This implies that a good approxima-

tion of the pulse at any instant is gi_,en by a finite number of applopriate sine

and cosine terms, namely

L_ Ft
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m

a°zp(x,t)- - + x 00 cosB- (x,t) (4.zl)
J J

j -- I

where p (x,t) is the pressure associated with the pulse at any point x and

time t as the pulse propagates through the dispersive media. It is assumed

that the ampli*ude attenuation of each component is of the form:

Aj (x) = aj exp _- Qv {_j)x_ {4. Z2)

aj is the Fouri, er coefficient of the jth component at x = Xo, the reference

point. The phase Bj (x,t) will be of the form:

(O.X

J _.t (4.23)

c %1 J

Each component represents a progressive sinusoidal wave whose amplitude

is decreasing exponentially according to the frequency dependent amplitude

z.ttenuation coefficient a v (_) and whose phase velocity is given by the fre-

quency dependent term c (_j). At any position x and time t the components

of the Fourier series may then be calculated and combined algebraically to

obtain the pulse wave form at a particular point.

A wide variety of pulse shapes were considered and the triangu-.

lar pulse shown below was selected for detailed analysis:
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Triangular Pulse

' I
i t
I ! I
! o _.' , _
I t I

L. a-# I

t I

The Fourier series description of such a pulse is given by

= _/_ (4.24)ao p

a = --- cos _

n ._. ZjZ "rp

To start the pulse at time t = 0, equation 4.21 has to be modified so that

a° _Z I ] I x
(x,t} + exp - (_j} x cos co (t - _/ (4.26)P

J c(_)j=o

To evaluate e v (_j) and c .(_j) for each frequency to account for

both absorption and velocity dispersion reference may be made to Fig, IV-3

in which the velocity dispersion ratio (c/c_)2 and the absorption per wave-

Length ttv = a v (to)/k (c0) are shown plotted against the frequency parameter
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_2Rf2. It must be emphasized, however, that these graphs account for only

viscous drag between the hydrogen vapor and liquid droplets and do not in-

clude other dispersion mechanisms such as heat and mass transfer between

the phases. Consequently in this anal-isis of pulse propagation only the con-

tribution of viscous drag to the dispersion is considered. It is also noted that

the sound velocity ,_ refers to the high frequency nondispersive vapor velo-

city. This is calculated in Section II-D from the known thermodynamic data

for hydrogen vr.por.

To analyze the propagation of the triangular pulse the foUowing

_, calculations are made

1. A duty cycle, *_/Tn = 1/4 is assumed.

2. A gas pressure of 74.3 lb/in 2 and a quality of 0.5 are

selected to represent the physical conditions of the liquid

hydrogen-vapor mixture. This permits both the velocity

dispersion and absorption to be calculated under these con-

ditions from Fig. IV-3.

3. The pulse repetition frequency 1/Tp is chosen such that

the value e 1 = 2_r/*_p lies in the range of frequencies in

Fig. IV-3 where the dispersion is pronounced and where

the absorption reaches a maxima. This frequency e 1 is

selected from the value of e 1 = _2Rf2 x 2_g/Rf 2.

4. Two values of _ are selected: e 1 = 1.07 x 103 and

el = 0.25 x 103 r_.dians/sec which lie on either side of

the absorption maxima shown in Fig. IV-3 for q= 0.5.
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5. Five harmonics of t01 are taken to be representative of the

frequency components of the triangular pulse.

6. The Fourier coefficients a i, a 2, ... a S corresponding to

COl, to?, ... to5 are calculated from equation 4.25.

7. Two points x = 0 and x = 4.0 inch are selected as the

points at which the pulse shape is to be calculated.

8. The amplitude attenuation coefficient a v (_) is calculated

from

%) - J
%)

9. The phase velocity c (_j) is calculated from

c %) --c " 2
co(_

10. Finally, the pulse pressure distribution at x = 0 and

x = 4.0 inch is obtained as a function of time t from

equation 4.7.6.

The results of these calculations are shown plotted in Figs. IV-

10 and IV-II. It may be seen that taking the first six terms of the Fourier

series gives a very good approximation to a triangular pulse. On comparing

the pulse shapes at x = 0 and x =4.0inch itis seen that for _01= Z.5 x 102

rad/sec thvre is littledifference in shape or displacement but for e I = I.07

x 103 rad/sec a marked phase shift and change of pulse shape is apparent.
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It may be tentatively suggested from the results that any small
"t "

change in quality _.s unlikely to significantly _ffect the shapes of these pulse

curves. In view of the limited time available it was decided not to pursue

any further the problem of pulse propagation.
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V. SUMMAR Y

Sound propagation in a two-phase fluid depends not only upon the

relative masses of the phases, that is the quality, but also upon the size and

spatial distribution of the constituent phases.

The propagation velocity is shown to increase with sound fre-

quency. At very low frequencies the velocity depends only upon the quality,

whereas at intermediate, frequencies, the velocity is a complicated function

of both the quality and aggregate phase sizes. At high frequencies the velo-

city approaches a fixed value, which is related directly to the properties of

the predominant phase in the mixture.

Calculations for the low frequency velocity agree with those re_

ported by other workers. Experimental data for the high frequency velocity

in other two-phase fluids support the view that the propagation is governed by

the dominant phase alone. This assumpt_.o_ is used in calculating the high

frequency velocity in the liquid hydrogen-vapor mixture.

Calculations at intermediate frequencies lead to complicated

expressions for the wave propagation constants, This is true even for an

idealized two-phase flui-] as, for example, a vapor fog containing uniformly

spaced droplets of equal size.

Simplified expressions taking into account drag and heat trans-

fer between the phases yield estimates of the relaxation times or time c on-

stan'.s associated with these processes. These time constants determine the

region of frequency and aggregate sizes of the individual phases in which

these parameters have little effect on the propagation constants.
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The sound velocity and absorption have been cal.culatedusing a

simplified model. This model is valid only for one particular value of the

quality (criticalquality). At the critical quality no evaporation or condensa-

tion of [Lquidtakes place for adiabatic pressure changes.

At qua!5.tiesgreater than the critical value, the calculated time

constants due to heat conduction are further increased because of the addi-

tional heat transfer needed to evaporate the [i:luid. For qualities less than

critical, adiabatic pressure increases ploduce condensation which increase

the effective heat transfer. The detailed computation accounting for the mass

transfer rate betwee_ the phases (in addition to simple heat conduction) in-

volved estimates of the temperature gradients in the vicinity of the phase

boundaries.

The precise meaning of the terms low, intermed'a*e, and high

frequencies used in the text is relative and their rn2.gnitudeand range is deter-

mined by the droplet size and quality-of the two-pha.se mixture. To illustrate

tk.edependence of the frequency ranges on droplet size T_bl.e I has bee_.,con~

structed for a mixture of Uquid hydrogen and vapor of critical quali_tyat at-

mospheric pressure.

Application of the analysis given in this report _c,a direct mea-

surement of quality in two- phase flow are limited to situattons where the ag-

gregates, i.e. droplets in fog or vapor bubbles in liquid, n.re exceedingly

small. For normal droplet distributions work'i.ng sound frequencies would,

of conven! .,nee, lie in the intermediste range where _he propagation velocity

depends on the aggregate size as well as the quality. Methods of separating

the unknown variables, that is the aggregate size and quality are, as far as

i_ known, beyond the frontiers of present know!.edge. Using low frequency

Jf_
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TABLE I

DE[_ENDENCE OF FREQUENCY ON DROPLET SIZE FOR HYDROGEN

MIXTURE OF CRITICAL QUALITY AT ATMOSPHERIC PRESSURE

Droplet Low Frequency Intermediate High Frequency

Diameter ZRf _ Frequency Range

2p _" 1500 c/s 1500 c/s- 36.5 Mc/s :> 36.5 Mc/s

201a _" 15 c/s 15 c/s--365 kc/s _ 365 kc/s

Z00p <_ 0.15 c/s 0.15 c/s--3650 c/s ) 3650 c/s

Zmm -_ 0.0015 c/s 0.0015 c/s--36.5 c/s _ 36.5 c/s

It is to be noted that the low and high frequency" sound velocities :n the
mixture are approached asvmptoticat;y (see Fig. IV-O). Because of
this the low and high frequencies given in Table I are calculated to be
those corresponding to the case ",;-.Inertthe sound vetoc,.'tv is within 3 *[.
of its final value.
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sound waves in aggregates of droplets or bubbles of moderate size involves

difficultiesof measuring very small phase differences in a progressive wave

in the presence of turbulent noise and multiple reflected waves.

Calculation_ of the change of the shape of pulses propagating

through the liquid hydrogen-vapor mixture are illustrated with examples. It

is found that it_the dispersion region the changing pulse shape is too rapid to

permit any precise measurement to be made of the complex propagation velo-

city,

In the presence of more complex two-phase flow regi=_aes as for

example, annular or slug ,flow, the sound propagation will be unpredictable

both in space and time. Under these conditions coupling between closely

spaced sound transducers could perhaps indicate_whether the fluid between

them is, at any partLcular instant, predominantly, liquid or vapor. The rela-

tive duration of the passage of liquid or vapor at kny location could provide

basic information on the phase distribution.

The result that at high frequencies the sound velocity is a func-

tion only of the simply connected phase and not of dispersed droplets or bub-

bles may be utilized in two-phase flow research to measure the flow velocity

of the dominant phase. This would permit the slip velocity between the phases

to be determined provided the velocity of the dispersed phase is independently

known.
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VI. CONCLUSION

Acoustic techniques have a specific, though limited application

for supplementing the more conventional experimental methods used in two-

phase flow research.

Useful data could be obtained by measuring the flow v'elocity of

the dominant phase either in fog or bubble flow using an acoustic Doppler

method. In the more complex flow regimes it may be possible to resolve

the spatial phase distribution by the.differences in acoustic coupling when

the t_luid flows between sound transducers

The original idea of determining the quality of a two-phase fluid

by measuring the sound propagation constants has been shown to be subject

to many difficulties; the exception being the special case of exceeding sr all

flow affgregates.

Further development of instrumentation along the former lines

is recommended.
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APPENDIX A

TEMPERATURE AND DENSITY FLUCTUATIONS ASSOCIATED

WITH SOUND WAVES IN TWO-PHASE FLUIDS

1. INTRODUC TION

The periodic fluctuations in pressure involved in the transmis-

sion of sound waves in a gas, produce fluctuations in the gas temperature and

density in accordance with the laws governing isentropic change. For an ideal

gas, this leads to the following equation for the temperature and density of _he

gas associated with its pressure at any instant.

The speed of sound c, is determined by the well known equation

c = (A-Z}

where S denotes isentropic changes in the gas. From equations 1 and 2 the

speed of sound in an ideal gas is readily found to be:

2
c : "yp/p (A-3}

A-I
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In a two-phase medium the pressure fluctuations produce neglig-

ible changes in the temperature of the liquid phase due to the relative incom-

pressibility of the liquid compared with the compressibility of the vapor.

The resulting fluctuation temperature difference between the vapor and liquid

causes heat transfer to take place between the phases and reduces the ampli-

tude of the temperature fluctuations in the vapor from what they would be if a

liquid phase were not present. The temperature fluctuations are no longer in

phase with the pressure fluctuations since time is required for the transfer

of finiteamounts of heat, and the fluctuations in the vapor temperature, there-

fore, lead the pressure fluctuations.

To perform an analysis of heat transfer between the phases it is

required that the geometry of the phase boundaries be idealized to a simple

shape. This appears to be physically justifiablefor two kinds of two-phase

flow; droplet or dispersed flow and bubble flow. Other types of two-phase

flow are described in Appendix H and do not seem to permit this same kind

of idealization. Dispersed or droplet flow is sho#n in Appendix H to exist

over a wider range of quality than other types of two-phase flow. For this

reason, and because the assumotions required in the analysis seem physically

justifiable,two-phase droplet flow is selected for the following detailed

analysis.

Z. THEORETICAL MODEL

In droplet two-phase flow the droplets of liquid are dispersed

uniformly in the vapor. Heat transfer phenomena take place in the liquid

A-2
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droplet and in the region of vapor in the neighborhood of each droplet. It

seems reasonable to idealize the actual geometry of the regions involved in

the transfer of heat to one taat is spherically symmetric. In this idealization

the vapor space is treated as a spherical shell about a droplet of liquid as

shown in Fig. A-1.

If all the droplets of liquid can be assumed to be of the same

size, the temperature fluctuations at corresponding poirlts in the vapor about

each droplet will be the same, and heat will not flow between the vapor associ-

ated with one droplet and that _.ssociated with neighboring droplets. The outer

spherical shell of the vapor, Rg, in the assumed model is therefore taken as

insulated. Dimensions of the droplet and spherical shell are chosen so that the

proportion of vapor and liquid is the same in the model as in the flow case

under c on side ration.

q Pf.... <A_,)
Rf V 1 - q pg

a. Boundary Conditions

A sound wave of angular frequency, _0, is considered to be pass-

ing through the two-phase medium. The wavelength over the frequency range

of interest will be large with respect to the size of the heat transfer model and

the pressure in the model can be considered to be uniform at any instant.
e

p - + p'ei% (A-S)

• A-3 "
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FIG. A-I SKETCH OF MODEL ASSUMED FOR
HEAT TRANSFER ANALYSIS
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(i) Interface Temperature

Since each phase consists of the same component, diffusion

processes do not occur and the rate of evaporation or condensation is con-

trolled by the transfer of heat. The temperature at the liquid-vapor inter-

face is the saturation temperature corresponding to the pressure at any in-

stant. The saturation temperature is convenient W found from the empirical

relation shown below:

Ln p = A - B/T s (A-6)

If the amplitude of the pressure fluctuations is small, a linear

relation can be assamed for the resulting fluctuation in the saturation tempera-

ture. The satura,tion temperature is also a harmonic function in this case.

= e i_°t) (A-7)Ts g (_¢s + Ts'

where

--2
dT T

Ts, = _s . p, = _s p, (A-S)

(ii) Evaporation or Condensation at Interface

Evaporation or condensation will cause the radius of the drop to

be time dependent and the principles of mass and energy conservation have to

be applied at the liquid-vapor interface in terms of the velocity of the fluid

relative to that of the boundary.

A-5
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For mass conservation

dRf I dRf 1- pf -- = pg Ug - _ (A-9)at (Rf) dt

For energy co._servation

kf = Ug dt _ r [Rf
- -- Hgpg (Rf) --

Hfpf dt _ r Rf

Employing the definition of the latent heat of vaporization,

Hfg = H - Hfg

the velocity of the vapor Ug at the interface becomes

pg Hfg g _ r IRf _r IRfJ

It will be shown later in this Appendix that the temperature

gradient w"ll also be a harmonic function with tirr.e for the case where the

interface temperature is harmonic. In view of this the mass flow between

phases is also harmonic if the density, thermal conductivity aod latent heat

of vaporization can be regarded as constant over the range of temperature

and density fluctuation.

A-6
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where

i_t
U = U'e

g g

T(r,t) = _ I'_ + T'(r)ei_t3

(iii) Insulated Outer Shell

To satisfy the condition of no heat flow across the outer spheri-

ca] shell the temperature gradient must be zero at this point.

T[ dT' != --_-rlR = O (A-13)
-rRg g

3. TEMPERATURE DISTRIBUTION IN THE DROPLET

Heat conduction in a sphere with a uniformly varying surface

temperature is governed by the equation

1 -_r 1 _T
- (A- 14_

2r _f _ t

A-7
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A solution to this equation which satisfies the harmonic temperature vama-

tion a" the !ntertace has the form of a product of two functions, one of the

space co-ordinates only, the other a harmonic function of time.

]• _, , T'(r) e it°t

Substituting equation 15 into equation 14 gives,

1
._. _ i_ T' (A-16}

2

r dr af

which can be simplified to

d-F i_
- F (A-_T)

2

d" af

by the substitution,

T' = F/r (A- 18)

A general solution for equation 17 is

F = A sinh xxf_f r + B cosh i_f r (A-19)

A-8
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From equation 18

Lira F = 0

r-_O

and the constant _, therefore, must be zero to satisfy this condition.

F = A sinh z_¢ r (A-ZO)

The other constant, A, is evaluated from the condition that

T ! --'_ T !

(_f) s

This leads to

Rf sinh _ r
T t = T ' -- (A-Z1)

S

r sinh _ Rf

To determine the gradient at the interface the above equation is differentiated

and evaluated at r = Rf.

j zj__ _ "s coth; (A-22)dT' I T _ icoRf Z icoRf
I

dr IRf Rf ¢f af

Alternative forms of this expression can be obtained by separating the real

and imaginary parts.

A-9
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[ ]dT'[ _ Ts' (1 + i)A sinh 2A - i sin zA - l (A-Z3)

dr IRf Rf cosh ZA - cos ZA

where

4. TEMPERATURE DISTRIBUTION IN THE VAPOR

Due to the compressibility of the vapor, the equations govern-

ing heat transfer in the vapor are not the same as in the liquid. In this case

the governing equations are obtained by applying the conservation laws of

__.ass and energy.

The mass flow into any region of the vapor space is equal to the

rate of accumulation of mass in that region.

d_I Rg _ 2

r'p dr = r pU (A-24)

r

The rate at which internal energy is accumulated involves three

effects; the internal energy carried in by the moving vapor, the work done by

compression, and the energy loss by conduction.

A-10
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d_.IRg rZpEdr - rZ(pUE �pU-kg _) (A-Z5)
dt) r

Differential equations which correspond to these integral equa-

tions are obtained by simple differentiation.

Conservation of rn&_s:

_(rZpU--) + _ = 0 (A-Z6)

r2 "_r "_t

Conservation of energy:

k _(pE) I _ (rZpUH)
_K = + __ (A-zT)

r Z --_r "_t r 2 "_ r

where

H = E + p/p (A-z8)

It will be assumed here that the vapor can be treated as an ideal gas.

p = p/RT (A-Pc))

E : CvT (A-30)

A-If
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H = CpX {A-31)

Employing these relations the energy equation becomes

k C v dp C p _ (r-U)
.__ _ + v (A-3Z)

r 2 "_ r R dt R r r

The pressure appears here as a total derivative sinc" it is assumed to be

uniform in the model and therefore not a function of the space co-ordinate.

To eliminate the velocity terin in the above equation, the mass

conservation equation (equation 26) is expanded as shown below.

1 P_(rZU) = _ 1 _p U _p (A-33)
r _-_r p -_t p -_r

Substituting equation 29 into the above equation gives,

1 _'_(rZU) = 1 dp + 1 _T U _ T (A-34)

r %r p dt T _t p "_r

Substituting this expression for the velocity term into equation 3Z, gives the

following for the energy equation.

z
a _T U "_T 1 dp

g - (A-35)

Z _'_ "_t Rp _r dtr r pCp

I

A-I2
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where

k
a = g

g pC
P

It is quite evident that the velocity is net eliminated by these substitutions.

However, it now appears in a second degree term. The magnitude of the

velocity is shown in equation 11, to be proportional to the temperature grad-

ients. Consequently if one considers pressure waves of decreasing intensity,

the magnitude of the product U_T f'_ r decreases in proportion to the square

of the pressure fluctuations, whereas the other terms decrease as the first

power. For small amplitude pressure waves, or for sound waves, the term

involving the velocity can be neglected and one has the form shown below as

the governing equation in the vapor.

o _r _T 1 dp
= (A-36)

Z

r _ r _ t pcp dt

This equation can be solved by methods similar to those used in

the liquid. Substituting equations 5 and 15 into equation 35 gives,

a iwp'
--_ / = it_T' (A-37)

Z
r dr

pCp

A-13
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The general solution to this equation is

T' p' C for D -fLr= -- + -- e + -- e (A-38)
pC r r

P

where

Applying the condition that the _emperature gradient must be

zero at the outer radius of the spherical shell (equation 13), leads to the

following relation between the coefficients.

njLRg + 1 -ZII.R
C = D e g (A-40)

.[__R - I
g

Equation 35 can now be expressed as

( -fl-(r - Rg} -.a_(r - R
T' P' De-f/'Rg J_.Rg + 1) e + (-[_-Rg 1) e g

pCp (A-41)

Satisfying the condition that the temperature f(uctuations at the interface match

those of the saturation temperature (equation 7) defines the coefficient D.

A-14
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-_R

D = s I

.ft. - Rf) Z) ..E - Rf)
.f_Rg - I) e (Rg + (fLRg + e" (Rg

(A-4Z)

The final expression for the temperature distribution is then,

P' (_ P_p/ Rf

TI - + s' -- "
pCp r

(fLRg - 1) eJT"(Rg - r) + (_l_Rg + 1) e-'_(Rg r) (A-43)

_ -f_-
(fLRg 11 e_-lRg- Rf) + tf__Rg + 11 e (Rg- Rf)

Differentiating with respect to r and setting r = Rf gives the

temperature gradient in the vapor at the vapor-liquid interface.

C•1

I
fl

d
P

T--i
dr [Rf Rf

(J'__Rg - 1) (J).Rf -'- l) - (.J)..Rg + ]) (.J_Rf - 1) e-ZJ_'(Rg
R f)

./_Rg - 1 + (-fLRg + 1) e-ZJ3"(Rg- Rf)
(A-44)

A-15
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5. VOLUME FLUC TUATION

Two factors are involved in the volume fluctuation of the as-

sumed model. The density of the vapor fluctuates due to the changing tem-

perature and pressure, and the mass of vapor also fluctuates due to the

alternate evaporation and condensation occurring at the interface. An

appropriate expression relating these factors is

Rg I dRf_ (A-45)

d Z Z _

_tjR f r pgdr = Rf p g (Rf) Ug (Rf)
dt .3

The fluctuation of the outer radius is obta_.ned by taking the

derivative on the left hand side of the above equation inside the integral.

= - r _ dr (_-46)
3

Rg dt Rg/ pg (Rg) Rf Rg pg (ag) t
Rf

If only small disturbances are considered the vapor density

may be regarded as the same at Rf and Rg and the equation may be sim-

plified to,

(Rf) g Z= r _ dr (A-47)

Rg dt kRgJ Rf Rg p Rf

A-t6
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The volume fluctuation is then obtained from the relation,

1 dV 3 dR
- g (A-48)

V dt R dt
g

jRg
1 dV /_13 Ug(Rf) 3 2 _p

= 3 r _ dr (A-49)
3

V dt x g/ Rf Rg _'g -_t
Rf

Equations 12, 23 and 44 give the contribution to the volume

fluctuation due to evaporation and condensation. To determine the contri-

bution due to the density variation, the integral on the right hand side of the

above equation is expressed in terms of the temperature and pressure.

Differentiating equation 29 gives

i _p_ I do I "_T (A-S0)
p "_t p dt T'_t

The derivative of temperature with respect to time may be

eliminated through equation 36.

__
1 _p = 1 _1 _pldp 1 ag ._ rj (A-51)
p _t p dt T r 2 "_r

A-17
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This equation may be used to evaluate the integral in equation

49 if only small disturbances are considered.

R

i '_dr ,, ��I g _o I dp 1 I

r (Rg 3 - Rf 3)

pg "_ t yp dt 3 T agRf Rf

(A-SZ)

Rf

where

R C - C V I
I = I P -

C C yP P

The volume fluctuation is then

- 3 - I - m

V dt kRg/ Rf yp dt

_ _ _ (A-53)

T kRg/ Rf _r Rf

Since the volume is a harmonic function, the above equation

may be expressed as

I '_ 3 ' I I '_31 ( ._3 1 dTg)l

V' 3i Rf Ug (Rf) Rf p' 3 Rf

V _ _Rg/ Rf kRg/ A Y_ T ag_Rg/ ;f dr IRf

(A-_4)

A=IS
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where

i_ot
V = V + V'e

6. SOUND VELOCITY

The sound velocity in a single phase fluid is given by equation

Z. In a two-phase fluid, the vapor may not be compressed or expanded

isentropically because of the effects of heat transfer. However, if equation

2 is interpreted in terms of the spatial mean pressure and density over a

volume containing a large number of droplets, the vapor and liquid taken in

aggregate would be isentropic. This interpretation should be valid if the

sound wavelength i_ large with respect to the mean distance between the

droplets.

The sound velocity may be expressed in terms of the equ&tion

obtained for the volume fluctuations in the following _"_y.

d_p dp

C 2 = "_p _ dt _ . dt = _ VP_____ (A-55)

_" 1 dV _V'p
dt V dt

where

P
: pg + (pf - pg) q (A-56)

A-19
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7. SUMMAR Y

The sequence of steps required to compute the velocity of

sound are as follows. From the quality uf the mixture the ratio of radius

of the "-apor shell to that of the drop is first _omputed.

R _/ q pfg - 1 (A-4)

Rf \1 1 q pg

The amplitude of the pressure fluctuation is arbitrarily as-

sumed and used to calculate the fluctuation in the interface temperature.

2
T

T ' - s p, (A-4)
s

Bp

1 'I 1dTf' Ts ' + i)A sinh zA - i sin 2A
- i _ ,j (A-ZZ)dr [R- Rf - cosh zA - cos z A

where

Jk = '/_f
_J 2_f

T ' P'

dT '! s oCg = _ P

dr IR f Rf

- 1)(f_Rf + 1)- (.(_-R + 1)(f_Rf- 1)e -2_QIRg -Rf)(fl
Rg g (A-43)

_2.f_ (Rg - Rf)
f'LR - I 4- (f]-R + 1) e

g g

A-20
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whe re
,J

, pf / dT , I dTf'

Ug (Rf) = k g - k. _ (A-lZ)g dr t
pgHfg Rf dr RI

_ _ _ g(af} _ : _

V oo \Rg] Rf _tP

_ 3,ag 3 _1 dTg (A-54)

T" kl_g] Rf dr Rf

c z = _ p' (A-55)

+ (Pf - pg) q-_ g

The sound velocity obtained this way is a complex number,

and, as explained in this report includes the attenuation as well as 2he

speed of propagation.

Unfortunately the results of this analysis require extensive

computations. The above list of equations would not present much diffi-

culty if only real numbers were involved. However, many of the variables

A-ZI
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are complex (real and imaginary). The intricacy of the equations seems

tG preclude rationalizing them into separate expressions for the real and

imaginary parts. Instead most of the arithmetic operations have to be per=

formed in complex arithmetic.

As many digitalcomputers now have the capability of per-

forming computations in complex arithmetic, use of such computers would

appear necessary for performing the required computations. The lIT

Research Institute, has such a computer which could well perform these

calculations. However, owing to limitations of time and funds, etc., its

use is not anticipated at present. Instead approximate relaxation times

are evaluated from solutions to the differential equation for the case of a

unit step change in interface temperature. The details of this work are

described in Appendix B.

.&- 22
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APPENDIX B

APPROXI1MATE RELAXATION TIMES FOR LIQUID

DROPS SURROUNDED B v VAPOR

Relaxation times are an indication of the time required for a

system to restore its equilibrium after an initial disturb-_nce. The model

in Appendix A is assumed to have a unif--_n temperature distribution

initially and is then submitted to a sudden expansion or compression. In

the liquid the temperature is at first unaffected. The temperature at the

: liquid-vapor interface is the new saturation temperature corresponding to

the changed pressure. The temperature in the vapor is initially that ob-

tained from an adiabatic pzessure change (Eq. A-l).

Approximate estimates of the subsequent time-temperature

h-etories in the liquid and vapor are given in the following calculations.

r

1 RELAXATION *'_• . T**,[E OF THE LIQUID

The equation governing radial heat conduction in *-he liquid,

[ Eq. A-14, is transformed to that for a flat slab by the transformation,
i

= r (T - To) (B-I)

i

After applying this transformation, Eq. A-14 becomes

!

!
i
I
!

B-I

I
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2
_x af bt

Boundary conditions after the transformation become,

r,O) = 0

0, t) = 0

,(Rf, t) = -Rf(T s T o )

•" A solution to Eq. B-Z for these boundary conditions may be

found in Ref. 17.

: j2 2aft vr

: / Rf (T s I-L-__/ Rf2]Rf

I To ).__r 2 (" 1)J sin _r -- e (B-37 (/. = + _ r

w j=l J Rf

The average temperature in a droplet is then found from Eqs. B-1 and

B-3 and the integral shown below

-_ _ 3 _Rf rZTdr (B-4

Rf3J0

B-2
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The result obtained is

aftjZ Z: It

Z

-- �(TT ) 6 _ 1 Rf_ M -- e (B-S)
T = T s s o Z _ .Z

n j=l J

Terms in this series with j greater than unity decrease with

increasing time much more rapidly than the initial term. For practical

purposes the relaxation time can be obtained by considering only the first

term in the series. The relaxation time is by the usual definition the time

required for the disturbance to decay by the factor, lie. Considering only

the first term, this occurs when the exponent is equal to unity. The relaxa-

- tion time is, therefore,

- Rf 2
Tf - (B-6)

Z
_ a fit

To solve for the temperature distribution in the vapor, thed

m

governing equation (Eq. A-36} is put into the same form as the equation

- for the liquid. This is done by replacing the temperature by a new variable

which is the difference between the temperature of the vapor and the tem-

perature the vapor would have if the pressure changes took place adiabatic-

ally.
i

x_=_k

= (8-7)
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For small pressure changes this may be linearized to

y - 1 T

AT "- T o (p . P° _
"Y Po

Since

_/ - 1 R Po

y Cp CpPoT o

1
AT = T - T o (p - po ) (B-8)

pCp

Substituting Eq. B-8 in Eq. -36 gives

"_ AT
- (B-9)

zr

This equation may now be transformed to that for a flat slab.

= r {AT - ATo) (B-10)

B-4

I
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The result is

2 _t_r a
g

The boundary conditions for the transformed variable are,

(r,0) = o (B-IZ)

= (B-13)
(RI, t) RfAT s

where

- 1

ATs = T-Ts O(_o) Y (B-14)

At the outer radius of the vapor shell, the insulated surface boundary condi-

tion transforms as shown below.

_T ] 0 ----_ R _--_r I = _ (Rg) (B-15)
g

_r R R
g g

Equation B-10 may be solved by the method of Fourier series.

A general solution is

B-5
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= A + Br + Cj sinkj (r Rf) + Dj cos kj (r - Rf e g J

j=l
_B-16)

Evaluating the coefficients from the boundary conditions gives

Ir £ _kj2agt 1

sin kj (r - Rf) e
{_ = AT s - 2Rf ......... (B-17)i-

Rf]j = 1 kj[Rg s£n 2 kj (Rg- Rf)-

where

Rgkj = tan kj (Rg - Rf) (B-18)

The average temperature in the vapor is then obtained from

the expression below.

Rg

A'-_" = 3 r2ATdr (B- 19)

3 R 3'Rg - f Rf

Perforr__ng the integration gives,

- agtk- J22

= ATs - (ATs - AT°) - - kj2"Rg kj (Rg(Rg 3 - Rf 3) sin - Rf) - Rf_

{B-Z0)

B-6

I
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For computational purposes it is advantageous to put this

equation in a dimensitgnless form. A new variable is defined as

coj -- kj (Rg - Rf) (B-Z1)

Substituting in Eq. B-Z0 and rearranging terms gives finally,

Z

_ _gjCO. t __

__ e f

AT = AT s - (AT s - &To) (B-ZZ)

kRfl J\Rf J
where

l
co.cot co. - (B-Z3)

J J Rf
1

R
g

As in the equation for the liquid, the first term in the series

ducreases with time much more slowly than the others. For practical pur-

poses only the first term in the series needs to be considered. The t_me

constant is the tithe for x_hich the first term has decreased by the factor

lie, or where the exponent is equal to minus one:

Rf -
Z

%col

The constant tOl,is the first root of Eq. B-Z3.

B- 7
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APPENDIX C

DERIVATION OF THE WAVE EQUATION TAKING INTO ACCOUNT

DRAG BETWEEN THE LIQUID AND VAPOR PHASES

It has been shown in Section IV-A that when a sound wave is

propagated through a homogeneous mixture of saturated hydrogen vapor and

droplets, the relative velocity between the phases is dependent upon th,_: value

the frequency parameter _2RfZ. From what has been stated, each droplet
of

opposes the vapor acceleration by the force X given by equation 4.1 Section

IV-A. Because of this body force the dynamical equilibrium for an element-

ary volume of vapor undergoing pressure fluctua,'ions in the sound wave must

be modified. The following analysis i8 used to deri-c the wave equation tak-

ing into account this force.

Consider unit mass of a mixture of liquid hydrogen and vapor

and assume there are N droplets each of meaff radius R( suspended uniform-

ty in the vapor. Then the number of droplets .per unit mass of vapor i_ N/q,

where q is the quality.

Each droplet opposes the vapor acceleration by the force X.

Therefore, the total reaction force on the vapor caused by N/q dropIets per

unit mass of vapor is - NX/q. The probtem now reduces to determining the

effect of this extraneous force on the wave equation.

Consider the equilibrium of unit volume of vapor of density *Po

at rest and bounded by sections x and x + _x at time t.

*Elsewhere the vapor density is referred to as pg.

C-1
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Condensation of element _'x is:

r,_-_ : Po(1 + .) oc:,: (c. l)

where

P - Po /"P

P P

and

_-- : _ ' = PO _ S
_x _x _t _t

Th6 continuity equation for the elementary volunie is

_-_P+ -_--(pug) = o (c.z)_t _x

where

U = U e_p i(_t + kx) (C..3)
g go

where

V
C
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c being the phase velocity and a the attenuation coefficient due to drag.v

The dynamical (Euler) equation for the forces acting on _ne element is

/!h 1 N_. c >P fx _
P_k. + U g o x = - pX _C.4',3t g _x _x q

Since the velocity amplitude is very smaI'., U _U /_×- can be neglected in
g g

equation C.4, then,

"_U 1 /dpX_ "_p N

--.--_=--[ |-- x <c._)
-'d t p _dp/S "_x q

The suffix S denotes an isentropic process in the vapor. Since,

= Po _ and Po -- p (small density fluctuat:.ons)

Equation C. 5 becomes,

= - x = - _ -- - --x (c._;
g _-_pj P° "_x q p S "_x q_t S k.d/

From equation C. Z

_u %p
p _ = - (since U is small) (C. 7)

_x _, g

and since,

C-.)
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_p _s _u %s
___% = (c.8

_t dt x dt

Differentiating equations C.6 and C.8 with respect to t and x gives

g = _ (c.9

_t Z -_t q _tS

and

Combining equations C.9 and C. 10 the wave equation is obtained

_gU = p N 3X: m (C. 1
2 Z

3t \op/S _x q Ot

In the case of a mixture of liquid i-ydrogen and vapor, the mass of liquid pe

unit mass of mixture is

( 1 q) N 4 uRf3_ = . - pf
3

where pf is the density of liquid hydrogen. Accordingly, the wave equation
i

C. 1! for the two-phase mixture may be written as

C-4
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il

-atz -3 z
• x q _Rf3pf "_ t

Ii where

I.
-dp

I:

_. is th_ sound velocity in saturated hydrogen vapor (high frequency value).

I
I
I
!
I
I
I
I

j

C-5

I tl ' '
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APPENDIX D

COMPARISON OF PRESENT FORMULA FOR ATTENUATION DUE

TO VISCOUS DRAG WITH THAT OF EPSTEIN AND CARHART

In Section IV-A it has been shown that the attenuation due to

viscous drag, av as a function of the frequency parameter _21_.fZ, and qua._i.ty

q, is given by:

(I -.q)/ p._ o c

a v - _ - _f/( _ {D.I)
coo q 1 + 0) 2 + 02 coo

where

- 1 + 1 .- {D.'.__

c q pf/ (1 + (I))2 + 02

Epstein and Carhart (Ref. 14) on the other hand quote the formuta for the

attenuation due to viscous drag as

6_NRf

b E - . "_g (1 + _Rf) I E (D.3'_
c¢_d

where

16{34Rf 4
I E = (D.4)

16_4Rf 4 Pg /&,2[ 2]+ 72 -- _3Rf3 + 81 1 + 2_Rf + 2_2Rf

pf \pf/

•D°I

" ' m I !
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The problem here is to show that under certain circumstances both the pre.-

sent theory and that of Epstein and Carhart represent alternative bays of

JL
describing the same phenomenon; that is, _v-- aE' In equation D. 3, N is

the number of particles per unit volume

N : p"- {l-q)
1

(in terms of the quality)
4

Pf q -- _rRf 33

Substituting for N in equation D.3,

9 p_ (i q)
fg

a E = -- --_ (1 + _Rf)I E (D.3a

Pf q Rf2c_o
2

Rearranging equation D. 1

- f _ 0

a v - 02
coo q pf (1 + _D}2 +

a v = _ f _._

co_ q pf 4 _zRfz pfjk% (i + e)z + 0z

sinc _.

c0Rf 2
_ZRf2 =

2_pg
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9 p_ (1 - q) _L (1 �_Rf)D (D. 1QV = -- 2 V
2 pf q Rf c_

where

¢ pf
V

co6 11 +(D) 2 + Oz

On comparing equations D. la and D. 3a, it is seen that a v : ale provided

, D v IIE. Consider the expansion of r_(1 + (i))2 + oZJ -1n= in D v

I I

[ a(_' a 8, ,
(1 + (D)2 + I + + ;_Rf + I

pf _,Z 413Rf/..J pf 16 (34Rf 4

1

pg 9 "pg +1+2-- + + _ -+ +

Pf \Pf/ L4 41_Rf 16 [54Rf 4

Pg'_ 81 (_ZRfZ + Za3Rf + 1)Pf /
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multiplying throughout by 16_4Rf 4

I

(1 + (i))z + oz

16fl4Rf 4
2

161_4Rf 4 + 16 pg _4R/ + 7Z -- _3Rf3 + + 9p3Rf +
Pf Pf Pf

2

Cp_)f 81[1 + Z[BRf + ][32Rf 2] (D.5}

Comparing equation D. 5 and D.4 it is seen that provided powers above the

fourth are neglected in D. 5, then:

1
= I E

(1 + m)z + oz

.r_ (D.6)
¢I 1 - aE

v Co¢_

Thus Epstein's and CarharCs theory fails to take into accotmt

1. Dispersion in the sound velocity due to drag between the

phases in the mixture.

2. Higher values of the gas to particle density ratio (pg/pf).

Epstein considered only the case where pg/pf_l, as for

water droplets in air.

D4
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3. Coefficient greater :han the fourth power in his function

_

4 _',._-_ " tt_ freq,_ency parameter _2Rf2r_ 1 when the

f.'e_uency is high and/or wherL the droplet size is large.

It would appear thereCore that provided the density ratio and velocity disper-

sion is small and tP.e frequency low such that powers above the fourth in equa-

tion D. 5 may be neglected, the two independent formulae for the wave attenu-

ation due to phase d-_ag are in good agreement.

D-5

m-q I
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APP_..NDIX E

EVALUATION O_' THE CRITICAL QUALITY FOR A

TWO-PHASE FLUID

During sound propagation in a two-phase fluid there i5 a unique

value of the quality when the heat generated by ;,nadiabatic compression in

the vapor is not used in evaporating or condensating liquid. In other words

none of the heat transferred by conduction in the vapor or liquid is used _o

promote phase change a_- the liquid-vapor boundaries. This critical quality
l

can be evaluated in the following manner. Entropy per un_ z.ass of mixture,

S = qSfg +Sf. For an isencropic change

dS = qdSfg + S_odq + dSf = 0

For small pressure changes,

dSf
dq dSfg + 0
_.+ q _ =

Sfg dp dp dp

i

dq = _ d_ _ dp

dp Sfg

When there is no phase change during the isentropic process, dq/dp = 0, and

q = qc' is the critical quality. Therefore,

E-I

I
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(dSf/dp)

qc -

(dSfg/dp)

The value of qc as a function of pressure has been calculated from the

slopes of the entropy-pressure curves for liquid and vapor hydrogen. The

results of these calculations are shown in Fig. E. 1 for both e4uilibrium

and para hydrogen. Thermodynamic data for the para hydrogen was taken

from Ref. 18. It is seen from Fig. E. 1 that for pressures below about

30 psia, the critical quality qc inc_yeases rapidly with pressure. Above

30 psia, however, qc reaches a constant value of about 0.42, although a

slight variation is apparent. The reasons for this variation are not known.

The total change in the sound velocity clue to viscous drag and

heat conduction in the liquid hydrogen-vapor mixture is calculated in Section

IV-B at one particular value of the critical quality. The effect of mass trans-

fer on sound propagation is, of course, neglected in this case.

E-Z
i
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APPENDIX F

EFFECT OF TUBE DIAMETER ON SOUND PROPAGATION CONSTANTS

The absorption and velocity dispersion of acoustic waves in

fluids contained in narrow tubes due to viscosity and heat conduction has been

analyzed by Kirchoff (Ref. 19) and extended by'other authors (Ref. 20). In

general this effect is negligible, but for narrow tubes whose diamete _ is

small compared to the wavelength, the viscous drag in the boundary layer at

the tube waUs influences wave propagation. An additional correction also

has to be made for the heat conduction between the walls and fluid.

Analytical expressions for the corrected sound velocity c', and

attenuation constant a', due to the effects of viscosity and heat conduction at

the tube walls have been derived by Kirchoff. These expressions are given

by:

t 4 )c' = c _-_ (F.I)

Zr T co

where -p'g is the corrected kinematic viscosity, _g, and r T is the tube

radius, and

, I + g (F. 21
_g = _)g

Cpg_g

F_l
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where _/o is the ratio of the sl,ecific heats of the fluid. Also, for the attenua-

tion constant:

a' - _g'_ IF.3)

rTc 2

Equation F. 2 gives the correction to the kiner.aatic viscosity due to heat con-

duction between the tube wails and fluid. It may be seen from the above equa-

tions that at high frequencies and with tubes of large diameter, the corrected

sound velocity c' approaches the free space velocity c. On the other hand

for tubes of very small diameter, the effect of viscosity and heat conduction

is to lower the sound velocity and increase the absorpticn in the fluid. It is

of interest to note that for very fine capillary tubes such that rT<_< _g/_0,

the wall temperature governs the fluid temperature and the process of sound

propagation becomes isothermal rather than adiabatic. This source of velo-

city dispersion will be neglected in the present study.

To obtain an order of magnit,:de assessment of the effect of tube

diameter on sound propagation a calculati_., is given for the mixture of liquid

and vapor hydrogen contained in a narrow tube of 3/16 in. diameter. The fre-

quencies necessary to lower the sound velocity 5 °/o for tubes of this diameter

are obtained for several pressures. The data required to make these calcula-

tions is given in Table F-I.

Values of the critical quaFty qc are used to calculate 3/o so that

the effects of phase change on sound propagation may be neglected. The ratio

of the specific heats at low frequency, 3/o in equation F. 2 is calculated from

F-Z
i
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(1 - qc )
qc¥oo + Cpf oC

vg (F.4)_/o =
(1 - qc )

qc + CpfoC
vg

Equation F.4 has been derived in Section IV-B. Vatues of k , Cpg Cpf o,g

big, and _)g for saturated hydrogen vapor were obtained from Ref. gl. Sub-

stituting this data in equation F. Z gives the corrected kinematic viscosity

' from which thc corrected sound velocity can be derived. Rewriting equa-
_g

tion F. 1 in the form:

/

Ac 1 / Zg'g-- - -- where Ac = sound velocity change, (c- c')

c 2r T _ ¢_

A 5 °/o decrease in velocity due to the tube effect gives the frequency f, as

100 '
f - _ g (F. 5)

A

Z
where A = _rr = cross-sectional area of tube. For a tube of 3/16 in. dia-

T

meter, A=v(1/128)Zft 2 = 1.92x 10-4ft 2. At 14.7 psia, _'g = 1.09x 10 -5

ftZ/sec, then from equation F. 5, It-- 6.0 cycles/sec. At 48 psia, _' =g

4.44 x 10 -6 ftZ/sec then, f_Z.0 cycles/sec. At lZ0 psia, _' = I 87 x
' g '

10 -6 ftZ/sec, then, fN1.0 cycles/sec.

F-4
i
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Itis to be noted that a frequency of 6.0 cycles/sec would be

required to lower the sound velocity 5 _/oin the l_iquidhydrogen-vapor mix-

ture of quality 0. 375 at atmospheric pressure, This value is considerably

below the frequency of 30 cycles/sec calculated in Section IV-B to yield

the equilibrium sound velocity in the mixture under the same conditions.

It may be concluded, therefore, that the effect of babes of 3/16

in.diameter an the low frequency equilibrium sound velocity is generally very

small.
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APPENDIX G

DERIVATION OF THE FORMULA USED TO CALCULATE THE

HIGH FREQUENCY SOUND VELOCITY

By definition, the sound velocity in a flmd is

where S denotes isentrooic conditions. Alternatively this may be written in

terms of the specific volume V, of a gas as

c .: - V Z (G. 1}

S

Enthalpy per unit mass of gas is

H = E + pV

dH = TdS + Vdp

E is the intcrnal energy per unl_ mass of gas. Thus for an isentropic pro

cess, where dS = O,

fb I\
I = v (O.Z)

G-1
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Using the first law of thermodynamics,

TdS = dE + pdV = O

The re fo re,

__-Os : - p (o.3)

Expressing equation G. 1 in terms of H and E, and substituting equations

G. 2 and G. 3 into G. 1,

The re fore,

NOW,

f_ l-I" H"-I-E / _{H/E)!

T he n,

2.
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o E p S

Or

c Z = p H 1 +

The above expression G. 5 for the sound velocity c, as a function of H, E:

p, _ud p is used to calculate the high irequency propaga'_.on velocity, co_

in the tiquid hydrogen-,;apor mixture. This is discussed in Sectlcn /I-D.
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APPENDIX H

LITERATURE ON BOILING HEAT TRANSFER AN l)

TWO PHASE FI_,OW

H-I

1964013234-142



NOMEI_CLATURE FOR APPENDIX H

A = area

Cp- -- specific heat at constant pressure

G = mass velocity

g = acceleration due to gravity

h = heat transfer rate

Hfg = latent heat of vaporization

k = therreal conductivity

NNu = Nusselt number

NRe = Reynolds number

Npr -- Prandt[ number

= heat flow rate

T = temperature

T = saturation temperature
S

p = density

v = Lockhart-Martinetli parameter for turbulent turbulent flow

x - quality Gg/( G + Gf)g

= surface tension

_t = dynamic viscosity

SUBSCRIPTS

f = liquid

g = vapor or gas

t = to ta I

TP = two-phase

SPL = single-phase- liquid

I4-9
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APPENDIX H

LI]JERATURE ON BOILING HEAT TRANSFER AND

TWO PHASE FLOW

1) INTRODUCTION

Boiling is the process of hea t addition to a fluid resulting in a

change of phase from liquid to vapor. Boiling heat transfer may occur

in systems:

a) where only natural convective forces operate. This process

is known as pool boiling and may be further sub-divided into

nucleate and film boiling

b) where forced convective forces are imposed which rcsult

in the flow of fluid along a tube or channel. Due to

evaporation the fluid is a mixture of liquid and its vapor

at the saturation condition. This is described as one-

component two-phase flow. The flow of a mixture of a

liquid and some other gas or vapor is described as two-

component two-phase flow.

It is evident from the volume of published material that substantial research

effort has been invested in studies of boiling heat transfer and the char-

acteristics of two-phase flow. To a great extent, the heat transfer work

has been concentrated on pool boiling, particularly in the nucleate range.

Two-phase flow studies have been mainly directed to the prediction of

pressure drop, friction factors and choking or critical mass flow. On

grounds of convenience and the direct applicability of results much of

the work on heat transfer has been carried out using water. Similarly,

with two-phase flow, the studies have been made mainly with mixtures

of water and steam or water and air.

H-3
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Single-component two-phase flow is generally more complicated

both ._xperimentatly and analytically than t_o-component two-phase flow.

In addition to momentum and energy transfer there exists the possibility,

with single-corr:ponent two-phase flow, of mass transfer at tl-e vapor-

liquid interface with consequent changes in the phase velocities and the

dev.sity along a flow section,

Data on boiling heat transfer and the two-phase flow characteristics

of cryongenic fluids and systems are steadily accumulating bu_ the volume

of data availal_ at this time is too limited and too specialized to allow for

its effective use to accurately predict the performance of systems in

general.

2.) STATUS OF THE PROBLEM

In a recent (1962) comprehensive review Zuber and Fried I have

critically examined the use of available data for predicting the rates of

heat transfer to liquid hydrogen in particular and other fluids in general

when a change of phase takes F/ace. Both pool boiling and two-phase flow

systern,_ were considered. Their conclusions are so pertinent as to be

worth qo.,.',ting here in entirety:

a) Nucleate Pool Boiling

"The propose,] correlations for nucleate pool boiling do no_

take into account the conditions of the heating surface. Con-

sequently these equations are not general and cannot predict

the heat transfer rates for any solid-liquid combinations.

For a 'smooth' surface and for a given solid-liquid combination,

the equation proposed byRohsenow z can be used for predicting

the heat transfer rates to liquid hydrogen at various pressures

TV i
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when the value of a constant (for a particular solid-liquid

combination) is determined from one set of experimenta!

conditions. An equally satisfactory agreement was obtained

using an equation proposed by Labountzov. 3

Quantitative experimental data pertaimng to the effect of

surface conditions on the heat transfer rates in nucleate

boiling are very scarce."

b) Forced Convection with a Change of Phase

"Experimental data iadicate that the heat transfer coefficient

in forced convection with a change of phase depends on the

two-phase flow pattern_.

Reliable correlation for predicting the two-phase heat

transfer coefficients are not available. The correlation

schemes available in the literature canno_ be used for pre-

dicting the two-phase heat transfer coefficient to liquid

hydrogen in forced flow.

An understanding of the two-phase flow patterns will be

required before successful correlation of two-paase heat

transfer coefficients can be made. '_

c) Critical Heat Flux Density

"The critical heat flux density to liquid hydrogen in pool

boiling can be predicted from equations availatle in the

literature.

No general equations that would permit the reliable prediction

of the critical heat flux in forced convection are available.

Experimental data indicate that in forced convection the
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critical heat flux can be induced by several mechanisms,"

d) Effect of Reduced Gravity

"The vapor generation is unaffected by a reduction in the

gravitational field whereas the vapor removal depends on

the nature of the force field. Both problems can be analyzed

in terms of information available in the literature."

An independent survey of the literature, including that available subsequent

to the cr.iticat review quoted above, does not reveal justification for any

substantial revision of these conclusions.

The mechanism of pool boiling is sufficiently understood except

for the effect of the surface finish of the solid heater or container. Much

more analytical and experimental work remains to be done before a

similar understanding of any two-phase flow system is completely

established.

3) GENERAL DISCUSSION

a) Pool Boiling

Pool boiling occurs when heat is supplied sq as to evaporate

a liquid without the imposition of forced convective forces. Four distinct

regions may be recognized in which the boiling exhibits uifferent

characteristics, as first recognized by Nukiyama 4. These regimes

depend on the temperature difference between the liquid and the solid

heater surface and they may be defined as the convective, nucleate, meta-

stable and stable film boiling regions as shown in Fig. H-I.As the heater

surface temperature rises in a pool of unsaturated liquid natural con-

vective currents are established. These circu'ate liquid, some of which

evaporates at the free surface. A further increase in heater temperature

Td-&
i
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results in the formation of small vapor bubbles on the heater surface

which grow to a critical size, depart and then condense before reaching

the free surface. This is the phenomenon of partial boiling, as it is so

called.

As the temperature difference increases more and larger

vapor bubbles form which rise to the surface, break through it and join

the vapor above the liquid. This is the region of nucleate boiling and is

characterized by increase in both the heat flux and the heat transfer

coefficient with increase in the temperature difference up to a maximum

value called 'the critical heat flux'.

If more heat is supplied to the heater an unstable film of

vapor forms on the solid surface. Large bubbles form on the outer surface

of the film and the film itself collapses and reforms rapidly. The presence

of the film reduces the heat transfer coefficient, an effect which consequently

reduces the heat flux to the liquid. This causes an increase in the heater

temperature thus increasing the difference between it and the liquid

temperature and thereby accentuating the formation of the vapor film.

This cumulative process proceeds until the vapor film becomes stable

and continuous with a tow heat flux and a large difference in :emperature

between the heated surface and the liquid. Eventually, unless the heater

is first burned out, the influence of radiation from the very hot heater

surface becomes significant and the heat flux once more increases. Once

the stable film is established the vapor bubbles form at the outer edges of

the vapor film and the metal surface has little effect.

The region of nucleate boiling is of greatest interest because

this is where the maximum heat transfer coefficients and heat fluxes can

be obtained, l_xperimenta! data has shown that the condition of the surface

TT ,b
I
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has a _ubstantial effect on these quantities because both depend not only on

the temperature difference but also on the number of bubbles produced.

The bubble population density depends on the nucleation characteristics of

the surface, an important factor of which is the size of the surface irreg-

ularities. Jakob ._ud Fritz 5 investigated boiling on rough and smooth hea t-

ing surfaces and found that the heat flux of the rough surface was greater

than that of the smooth, but no satisfactory correlation of the effect of sur-

face i: regularities appears to have been prodaced. It may be mentioned

that the relationship between surface roughness and nucleation site density

is being furth2r investigated in the Heat Transfer Laboratory of the Illinois

6
institute of Technology. This study substantiates the early findings of

Jakob and Fritz. Kezios and co-workers are also investigating the fre-

quency spectrum of nucleation sites.

Some two dozen equations have been proQosed to correlate

data in the nucleate boiling region. Most are limited to the range and con-

d!tions in which the experiments were conducted but a few have been found

to correlate the experimental results for a number of liquids and liquid-

solid combinations.

2.
One equation proposed by Rohsenow for 'smooth' surface

is of the form

kf L_ ' (pf - pg} C i_fHfg (Pf _ pg} Npr (H-l)

H-9
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The constant C has different values for different surface-liquid combina-

tions and must be determined from experimental results available for a

given surface.
1

Ancther equation recommended for use by Zuber and Fried
3

when the constant C cannot be determined is that proposed by Labountzov'-

h 0.65 113
Cppf o'T = 0. 125 NRe Npr (H-2) .

kf (pgHfg) 2 s

For NRe_10 -2, and

h 0.5 lj3
Cppf O'T = 0.0625 NRe Npr (H-3)

kf (pgHfg) 2 s

For NRe_10 -2 where

.of (_/A Cppf O_Fs
NR e - (H-4|

pg _fHfg (pgHfg) 2

For the critical he_.t flux in pool boiling Zuber and Fried I recommend the

use of the following approximate equation:

['L| p 2 -lij 1/4_Ir/24 (H-5)

(o/A) crit

pgHfg 6g (Pf - Pg

t

vT •
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b) Some Aspects of Two-Phase Flow

In general two-phase flow has been classified as:

a)_ one component - a mixture of liquid and its vapor

b) two component - a mixture of liquid and a gas of

different composition.

Other more complex mixtures ma t - exist such as a liquid

and its vapor at saturation conditions with a gas of different corrapositi.on.

These however do not appear to have been classified or to have received

any s._gnificant study.

Many of the characteristics of one component and two com-

poneo.t flow appear to be similar. One component flow is the more com-

p_tcated of the two types both analyticaUy and experimentally. This is be-

cause in addition to momentum and energy transfers there may also be

mass transfer between phases at the liquid vapor interface along an) _ flow

section.

A flow equation including these various degrees of freedom

requires knowledge of an acct_rate flow model incorporating the possil_i.'-t',es

of different phase velocities (slip) and variation in density becat:se of a

change in the quality along the flow section. No satisfactory equaEties of

this type have yet been proposed and essentially no work has been done

for the case where the flow patterns are changing. The mass, momentum

and energy transfers at the liquid-vapor interface are a__] ra.te processes

which require time to attain their equilibrium values. Although of obvious

importance very little i- ,_nown about these transfer rates under f_ow con-

ditions but many instances of metastable flow have been reported.

H-11
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Much of the work on two phase flow has been directed to the

ident_.ficafion of the various flow patterns that can exist, the prediction of

two phase pressure drop during isothermal flow and the determ'[na'Aon of

criteria for choking or critical mass flow.

Flow Patterus

7
Mart!ne-l!i et ai have identified four basic types of flow:

{i} Viscous liquid and viscous vapor

(iij Viscous hquid and turbulent vapor

(iii} Turbulent liquid and viscous vapor

{i,-_} Turbulent liquid and turbulent vapor.

They have also suggested the classification of flow in terms of a

Reynolds number.

A comparison of flow patterns observed by other investigators has

8
been made by Alves. He listed the fol!ow_ng sequence of flow patterns in

a horizontal pipe as the gas phase mass velocity is increased.

_i) Pure !iqcid

_ii) Bubble flow (bubbles _xlove along the upper part of the

pipe at ak:out the same velocity as the liquid)

(iii) Plug flow {alternate plugs of gas and liquid)

(iv) Stratified flow (vapor flowing above the liquid)

(v) Wavy flow (vapor above a wavy liquid surface)

(vi) Slug flow (periodic frothy slugs pass through the pipe

at a greater velocity than the average liquid velocity)

(vii) Annular flow (liquid flows in a film around the inside

wail of the pipe and the gas flows at a higher velocity

as a central core

TT 'I'_
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(viii) Mist or spray flow (gas with. liquid antratnment flowing

in a pipe with wetted wails sometimes called *fog flow')

(ix) Pure gas

In a one component system in which boiling occurs the ratio of liquid to

vapor changes with distance from the entrance of the pipe and therefore

the flow patterns change. Given e_fftcient heat flux or length of pipe the

whole spectrum of flow patterns listed above will exist until at sufficiently

high qualities mist, fog, or spray flow develops.

Correlations of flow patterns in two phase flow have been presented

in chart form by Baker, ? Krasiakova, [0 and by Lunde. 1 ! Baker's chart

was prepared specifically for the flow of two component oil and gas mix-

tures in oil pipe lines from the data of Jenkins, 1_. Gaozley, 13 Aires, 8 _nd

14 15
Kosterin. Later the chart was used by IMbin ct al for steam water mix-

tures, by Leonhard and McMordie 16 for Freon IZ and by Bronson et a117

for liquid hydrogen. Fair agreement was noted between the types of flow

observed and those predicted by the B;Ik_'r 1,11arl.

The Baker chart has been used here for a ._ti_dy ol tl}e effect of the

total mass flow rate and saturation tetnp_:rat_re on t{_e fl(,w patterns of

hydrogen for isothern_al flow at the saturation conditir, n. T! e results are

presented in Figs. H-Z to H-5. The ordff_ate Gg/)_ ;ind (Gf/Gg)k

were used by Baker following a suggestion by Holmesl8 ,::here k and _p

were defined as follows:

k = [(pg/0. 075)(pf/6Z. 5)] 1/Z (H-6)

and

H-13
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i/3

_/ -- (73/¢) btf(62.5/pf)2 (H-7)

In Fig. H-Z a series of curves are presented for hydrogen flow rates

ranging from 102. to 107 lb ft -2 hr -1 The quality of the mJ--_ture, defined

as Gg/(Gg + Gf) is shown at the principal points. The curves ascend

from right to left, that is as the mass of fluid in the vapor phase increases.

The transition of the flow patterns is clearly shown. The eventual change

to the dispersed or fog flow occurs at different values of the quality depend-

ing on the flow rate. Figure H-Z was prepared for flow at the saturation

conditions corresponding to YS°R and Fig. H-3 for saturation conditions

at 54°R. In Fig. H-4 the two curves for the 100,000 lb ft -z hr -1 flow

rate at temperatures of ZS°R and 54°R are compared. Although closely

adjacent and parallel for most of their length there is a considerable differ-

ence in the location of specific values of the quality as shown. From this

diagram and other similar plots for d[;ferent saturation conditions, Fig.

H-6 was prepared. This shows the effect of quality and saturation tempera-

-Z -1
ture on flow pattern for a total mass flow rate of 100,000 lb ft hr . One

important result which should be noted is the relatively low quality at which

the hydrogen assumes the dispersed flow regime.

Other diagrams for different rates of mass flow may be prepared.

The shapes of the curves obtained are similar but their location is different

as might be expected from Figs. H-Z and H-3.

At present there is insufficient experimental data to confirm or

deny the validity of the use of Baker's chart for such predictions.

!
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c) Critical Mass Flow

When the flow at the discharge of a constant area or converg-

ing area device is such that a reduction in the downstream pressure will

not increase the mass rate of flow the condition is referred to as choked,

critical, or mass limiting flow. It can occur in every fluid regarded as a

compressible ftuid.

Critical mass flow for the pure gas phase is well understood

and theoretical solutions for some ideal flow cases do exist. Recently

(1963) Smith 19 has prepared a choking two-phase flow literature summary

and he s'applemented this with design charts for a number of cryogenic and

other fluids. The idealized solutions provide upper and lower limits for

actual flow cases and reasonable agreement with experimental results may

be observed.

d) Two Phase Heat Transfer

Two phase heat transfer processes are not welt understood.

20
The subject was reviewed by Collier and since then other publications

have become available. Various methods and correlations have been pro-

21
posed for predicting the heat transfer rates. Rohsenow proposed a

super-position method considering the heat flux to be made up of a boiling

flux and a convective flux. In other cases, the use of pool boiling equations

above have been proposed. It has become clear however that in fact several

modes of heat transfer prevail as progressive vaporization takes place

along a duct. A typical characteristic of the local evaporating heat trans-

fer coefficient versus exit quality for several mass flow rates is shown in

1
Fig. H-6. Zuber and Fried have described the three regions thought to

prevail:

H-19

1964013234-160



H-20
i

1964013234-161



"Region 1 is the nuc|,eate boiling region in which the heat

transfer coefficient is independe c of quality. Irx this region, the

vapor formation occurs at the heating surface in the form of bubbles

that grow, detach and subsequently become dispersed in the flowing

liquid. It is thought that in tbis region the heat transfer is governed

by the mechanism of nucleate boiling.

Region 2 is the forced convective region in which the heat

transfer coefficient increases with quality. As the quality increases

along the duct, the increased velocity of the two-phase mixture in-

duced by the vaporization process suppresses the nucleate boiling

process, and beyond this point the heat transfer becomes governed

by the forced convection pro:.ess. The actual flow pattern of the

two-phase mixture is not known. Some researchers believe that

only a liquid film is in contact with the solid surface. Others be-

lieve that the liquid is in the dispersed phase :qat is continuously

being deposited and re-entrained from the heating surface.

Region 3 is the liquid deficient region in which the heat trans-_

fer coefficient decreases with incceasing quality. In this region, the

liquid film no longer wets the surface, The heat transfer is no long-

er due _o a highly conducting liquid film but to a poorly conducting

gas as a consequence of which the heat transfer coefficient sharply

decreases. "

For correlating data in Region 1, equations have been used

which were originally proposed for nucleate pool boiling, including the equa-

tion of Rohseno_v quoted above.

Sterman et al 2Z correlated data for water and ethanol using

a relation of the form:

/A pg ! Hfg/(NNu) TP = 6150 m (H-8)

(NNu) SPL LPgH[gMf Pf /C--_s]

H-21
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where the single phase Nusselt modulus was based on liquid properties and

the two phase Nusselt modulus was given by:

hTp ] ¢3r" 1/2
- (H-9)

(NNu) TP kf g (pf - pg

In Region 2 most correlations are based on the Lockhart-Martinelli 7

parameter Xtt defir.ed by

. (x)0,(,.)0,()0.- Pg (H- I0)

Xtt I - x pg tt_

and are of the form

hTp = const -- (H-II)

hSPL Xtt

Wide variation in the value of the constant and the index 'm' have been re-

ported and no reliable method of nrediction is available. Experimental

boiling heat transfer coefficients for hydrogen have been reported by

23 24 25 26 27
Mulford et al, Class et al, Malkov et al, Brickwedde, Weil et al,

28 29
Drayer et al, and by Graham et al. There were considerable differences

in the experimental conditions and apparatus used so that a general correla-

tion of these results is not possible.

Parker and Grosh 30 in a study of the heat transfer to a mist

flow of steam measured very high heat transfer coefficients for annular-mist
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flow. At higher qualities the coefficients decreased with a diminution of

the liquid film. At a critical value of the tube wall temperature a drastic

reduction in the heat transfer coefficient was observed probably due to the

onset of the liquid deficiency described above.

There is therefore a vital need for much further basic re-

search on heat transfer effects in two phase flow, Measurements are re-

quired of the local values of heat transfer coefficients, quality and differ-

ential phase velocities. Further studies of the flow patterns in two-phase

flow are required. Some effort should be made to assess the significance

of the physical characteristics of the fl'_id,the conditions of the surface,

the flow rate and the heat flux in determining the points at which the flow

patterns change. In other words, itis essential to the general understand-

ing of two-phase flow that suitable criteria be established to a11ow accurate

identificationand prediction of the flow regimes.

,,p.
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